Publications by authors named "Hongchao Kou"

The expected excellent lubricant effect of graphene in metals during friction and wear is rarely achieved because of the difficulty in synthesizing suitable interfaces. Particularly, the situation is more challenging in titanium (Ti) matrix composites (TMCs) because of the high chemical-interface-reaction tendency between graphene and Ti during composite fabrication. In this study, few-layered graphene (FLG) decorated with SiC nanoparticles (SiCp) was synthesized as reinforcement in Ti-6Al-4V alloy to improve the interface of the composites.

View Article and Find Full Text PDF

In the present work, the localized corrosion and stress corrosion cracking (SCC) behaviors of a commercial 6005A-T6 aluminum extrusion profile was studied comprehensively. The velocity of crack growth in self-stressed double-cantilever beam (DCB) specimens under constant displacement was estimated, which also provides insight into the local microstructure evolutions at the crack tips caused by the localized pitting corrosion, intergranular corrosion (IGC), and intergranular SCC. Characterizations of local corrosion along the cracking path for a period of exposure to 3.

View Article and Find Full Text PDF

The element oxygen is expected to be a low-cost, strengthening element of titanium alloys due to its strong solid solution strengthening effect. High cycle fatigue behaviors of Ti-6Al-4V alloys with different oxygen contents (0.17%, 0.

View Article and Find Full Text PDF
Article Synopsis
  • The rapid development of high-speed railways necessitates effective train maintenance, especially in challenging environmental conditions, focusing on managing pitting corrosion.
  • A study on the pitting corrosion of a commercial aluminum profile demonstrated that factors like microstructure, precipitate distribution, and immersion in saltwater significantly influence corrosion patterns.
  • The findings suggest that finer grains in the aluminum alloy exhibit better corrosion resistance, providing critical data for future modeling of material durability and damage tolerance.
View Article and Find Full Text PDF

To improve the bone healing efficiency of porous titanium implants, desired biological properties of implants are mandatory, involving bioactivity, osteoconductivity, osteoinductivity and a stable environment. In this study, bare porous titanium (abbr. pTi) with the porosity of 70% was fabricated by vacuum diffusion bonding of titanium meshes.

View Article and Find Full Text PDF

We introduce a new strategy that extends the established diffusion couple approach for efficient mapping of microstructural and mechanical properties in bulk samples. The featured diffusion couples undergo an interdiffusion annealing followed by a thermal/mechanical treatment for creating a blended spectrum of phases and microstructures in the well-grooved continuous composition gradients, which is then further accessible to local high spatially resolving microanalysis probing. The strategy is demonstrated on two diffusion couples, Ti/Ti-7.

View Article and Find Full Text PDF

In this study, a Ti-40Al-10V alloy with quenching-tempering microstructure was prepared and was characterized by ultra-large β/B2 grains and submicrocrystalline γ laths within it. A definite Kurdjumov-Sachs orientation was identified between the β/B2 and γ phase. Isothermal compression tests were performed to examine the hot deformation behavior at various temperatures and strain rates.

View Article and Find Full Text PDF

Strong static magnetic field (SSMF) is a unique way to regulate the microstructure and improve the properties of materials. FeCoNi(AlSi) alloy is a novel class of soft magnetic materials (SMMs) designed based on high-entropy alloy (HEA) concepts. In this study, a strong static magnetic field is introduced to tune the microstructure, mechanical, electrical and magnetic properties of FeCoNi(AlSi) high-entropy alloy.

View Article and Find Full Text PDF

High magnetic field is a powerful tool to tune the microstructure and improve the properties of materials. In this report, the nucleation behavior of undercooled CoSn near eutectic alloy under strong homogeneous and gradient magnetic fields have been investigated using glass slag fluxing method in a 12 T superconducting magnet. The mean undercooling of the undercooled melt is not altered by homogeneous magnetic field but depressed by gradient magnetic field.

View Article and Find Full Text PDF

For the β phase of Ti-5553-type metastable β-Ti alloys, striations in transmission electron microscopy (TEM) bright- and dark-field images have been frequently observed but their origin has not been sufficiently investigated. In the present work, this phenomenon is studied in depth from the macroscopic scale by neutron diffraction to the atomic scale by high-resolution TEM. The results reveal that the β phase contains homogeneously distributed modulated structures, intermediate between that of the β phase (cubic) and that of the α phase or the ω phase (hexagonal), giving rise to the appearance of additional diffraction spots at 1/2, 1/3 and 2/3 β diffraction positions.

View Article and Find Full Text PDF

Magnetic field can generate interface instability when some liquids are put close to magnetic field. A well-known interface instability is called Rosensweig instability or normal field instability. Here we report that pure liquid Co can be highly undercooled close to its Curie temperature in strong magnetic field with very high magnetization and exhibiting unique morphology instability called the normal field instability.

View Article and Find Full Text PDF

Porous titanium and its alloys are believed to be one of the most attractive biomaterials for orthopedic implant applications. In the present work, porous pure titanium with 50-70% porosity and different pore size was fabricated by diffusion bonding. Compression fatigue behavior was systematically studied along the out-of-plane direction.

View Article and Find Full Text PDF

Unlabelled: The present work assesses the potential of three-dimensional (3D) porous titanium (pore size of 188-390 μm and porosity of 70%) fabricated by vacuum diffusion bonding of titanium meshes for applications in bone engineering. Rat bone marrow mesenchymal stem cells were used to investigate the proliferation and differentiation of cells on titanium scaffolds with different pore sizes at day 7, day 14 and day 21 based on DNA contents, alkaline phosphatase (ALP) activity, collagen (COL) secretion and osteogenic gene expressions including ALP, COL-1, bone morphogenetic protein-2 (BMP-2), osteopontin (OPN), runt-related transcription factor 2 (RUNX2), using smooth solid titanium plate as reference material. The rabbit models with distal femoral condyles defect were used to investigate the bone ingrowth into the porous titanium.

View Article and Find Full Text PDF

In this paper, porous Ti6Al4V alloys for biomedical applications were fabricated by diffusion bonding of alloy meshes. The compression-compression fatigue behavior was studied. It results that porous Ti6Al4V alloys show enhanced normalized fatigue strength which is in the range of 0.

View Article and Find Full Text PDF

Porous titanium and its alloys are believed to be promising materials for bone implant applications, since they can reduce the "stress shielding" effect by tailoring porosity and improve fixation of implant through bone ingrowth. In the present work, porous Ti6Al4V alloys for biomedical application were fabricated by diffusion bonding of alloy meshes. Compressive mechanical behavior and compatibility in the range of physiological strain rate were studied under quasi-static and dynamic conditions.

View Article and Find Full Text PDF

Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied.

View Article and Find Full Text PDF

An experimental platform for solidification of undercooled melt and synchronous measurement of magnetization under strong magnetic field is reported. The facility can be used for in-situ measurement of the magnetization of the undercooled melts and to studying the non-equilibrium solidification from deeply undercooled metals and alloys in magnetic field. The key advantages of this apparatus are first, we can obtain large undercooling in high fields by glass fluxing technique in combination with cyclical superheating and supercooling method, which is comparable to the maximum undercooling obtained by traditional method without magnetic field.

View Article and Find Full Text PDF