Nano polystyrene (PS) particles and antibiotics universally co-exist, posing a threat to crop plants and hence human health, nevertheless, there is limited research on their combined toxic effects along with major influential factors, especially root exudates, on crop plants. This study aimed to investigate the response of Chrysanthemum coronarium L. to the co-pollution of nanoplastics and tetracycline (TC), as well as the effect of root exudates on this response.
View Article and Find Full Text PDFMicro- and nano-plastics (MPs/NPs) have emerged as a global pollutant, yet their impact on the root environment of plants remains scarcely explored. Given the widespread pollution of phthalate esters (PAEs) in the environment due to the application of plastic products, the co-occurrence of MPs/NPs and PAEs could potentially threaten the growth medium of plants. This study examined the combined effects of polystyrene (PS) MPs/NPs and PAEs, specifically dibutyl phthalate and di-(2-ethylhexyl) phthalate, on the chemical properties and microbial communities in a wheat growth medium.
View Article and Find Full Text PDFMicro and nanoplastics (MPs/NPs) coupled with heavy metals are prevalent in both aquatic and terrestrial ecosystems. Their ecological toxicity and combined adverse effects have obtained significant concern. Past studies primarily focused on how MPs/NPs influence the behavior of heavy metals.
View Article and Find Full Text PDFMicroplastics can potentially affect the physical and chemical properties of soil, as well as soil microbial communities. This could, in turn, influence soil sulfur REDOX processes and the ability of soil to supply sulfur effectively. However, the specific mechanisms driving these effects remain unclear.
View Article and Find Full Text PDFMicroplastics can affect the physicochemical properties of soil and soil microorganisms, potentially resulting in changes in the soil sulfur mineralization and its capacity to supply available sulfur. However, the specific mechanisms underlying these effects remain unclear. We performed soil microcosm experiments, in which the effects of polystyrene (PS) and polyphenylene sulfide (PPS) microplastics on sulfur mineralization were examined in black, meadow, and paddy soils under flooded and dry conditions.
View Article and Find Full Text PDFEndophytes play an important role in plant growth and stress tolerance, but limited information is available on the complex effects of micro (nano)plastics and phthalate esters (PAEs) on endophytes in terrestrial plants. To better elucidate the ecological response of endophytic bacteria on exogenous pollutants, a hydroponic experiment was conducted to examine the combined impact of polystyrene (PS) and PAEs on endophyte community structure, diversity, and wheat growth. The findings revealed that wheat roots were capable of absorbing and accumulating PS nanoparticles (PS-NPs, 0.
View Article and Find Full Text PDF