Publications by authors named "Hongbo Xi"

Fluidized Bed Fenton (FBF) technology, a fusion of the Fenton method and fluidized bed reactor, has emerged as a superior alternative to conventional Fenton technology for treating organic industrial wastewater. This innovative approach has garnered significant attention from researchers in recent years. While earlier studies primarily focused on pollutant degradation in simulated wastewater and catalyst development, there has been a growing interest in examining the alterations in mass or heat transfer performance attributed to fluidized beds.

View Article and Find Full Text PDF

Green and low carbon is an essential direction for the development of water treatment technology. Ozone catalysts prepared by the mixing method have advantages in terms of energy consumption and CO emissions, but are considered to be insufficient in catalytic efficiency and stability. In this paper, an Mn-Cu-Ce/AlO (MCCA) catalyst was prepared by optimizing the preparation conditions of the mixing method and the types and ratios of active components.

View Article and Find Full Text PDF

Targeted removal of three key refractory toxic organic compounds (TOMs) in 2-butenal manufacturing wastewater (2-BMW) is critical for enhancing pre-treatment by hydrolysis acidification (HA). We investigated the pre-treatment of 2-BMW with HA, coupled with ozonation in this study. Our results indicated that the removal rate of these key TOMs and the detoxification rate reached almost 100% and 46.

View Article and Find Full Text PDF

The specialized wastewater treatment plants for the chemical industry are rapidly developed in China and many other countries. But there is a common bottleneck in that the toxic pollutants in chemical wastewater often cause shock impacts on biological nitrogen removal systems, which directly affects the stability and cost of operation. As the research on nitrification inhibition characteristics is not sufficient till now, there is a great lack of theoretical guidance on the control of the inhibition.

View Article and Find Full Text PDF

Microplastic (MP) is a type of emerging contaminant that is verified to be threatening to some organisms. Controlling MP emission from the source is preferred for its refractory characteristic. The petrochemical industry is a possible contributor, responsible for the most plastic production, and wastewater is the most possible sink of MP.

View Article and Find Full Text PDF

Microplastics (MPs) are ubiquitous in the environment and have been verified to be harmful to organisms. The petrochemical industry is a possible contributor, for it is the primary plastic producer but is not focused on. In this background, MPs in the influent, effluent, activated sludge, and expatriate sludge of a typical petrochemical wastewater treatment plant (PWWTP) were identified by the laser infrared imaging spectrometer (LDIR).

View Article and Find Full Text PDF

Nutritional conditions of activated sludge had a significant influence on nitrification inhibition response. This study comprehensively investigated the inhibition of 3,5-dichlorophenol (3,5-DCP) on nitrification of activated sludge with different C/N ratios and carbon source types. The corresponding extracellular polymeric substances (EPS), microbial communities and functional genes were analysed.

View Article and Find Full Text PDF

Micro-aeration hydrolysis acidification (HA) is an effective method to enhance the removal of toxic and refractory organic matter, but the difficulty in stable dosing control of trace oxygen limits its wide application. Membrane-based bubbleless aeration has been proved as an ideal aeration method because of its higher oxygen transfer rate, more uniform mass transfer, and lower cost than HA. However, the available information on its application in HA is limited.

View Article and Find Full Text PDF

The single and combined inhibitory effects of different nitrophenols on the anaerobic toxicity assay (ATA) of anaerobic sludge and the variations in the content of extracellular polymeric substances (EPS) were investigated. The results indicated that 2,4-dinitrophenol (2,4-DNP) demonstrated the highest inhibitory effect, followed by 4-nitrophenol (4-NP) and 2-nitrophenol (2-NP), and the combined effects of binary and ternary nitrophenols induced additive toxicity. Furthermore, 2,4-DNP, the dominant toxic nitrophenol, at various concentrations and toxicant ratios, was the major contributor to the combined inhibitory effects of the nitrophenol mixtures.

View Article and Find Full Text PDF

In this study, single and joint inhibitory effects of nitrophenols on activated sludge and variations on the content of extracellular polymeric substances (EPS) were investigated. Results indicate that the nitrophenols adversely affected the organic and NH-N removal of activated sludge and the adverse effect of nitrophenols on autotrophic bacteria was higher than that on heterotrophic bacteria. Further, 2,4-dinitrophenol (2,4-DNP) demonstrated the highest inhibitory effect, followed by 4-nitrophenol (4-NP) and 2-nitrophenol (2-NP), and the combined effects of binary and ternary nitrophenols induced additive toxicity.

View Article and Find Full Text PDF

The response of microorganisms in microbial fuel cells (MFCs) to toxic compounds under different operating conditions, such as flow rate and culture time, was investigated herein. While it has been reported that MFCs can detect some toxic substances, it is unclear if operating conditions affect MFCs toxicity response. In this study, the toxic response time of MFCs decreased when the flow rate increased from 0.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) have been extensively studied as toxicity sensors. MFCs have potential as toxicity sensors because when their anodes are exposed to toxic substances or the concentration of the target is changed, the voltage generated by certain microorganisms with active electrical activity attached to the anode changes. However, the underlying reasons behind this phenomenon have not been deeply explored.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess the short-term effectiveness of surgical treatment for ankle fractures with complete deltoid ligament tears in younger patients.
  • A total of 21 patients underwent surgery, with follow-up showing successful healing and minimal complications, averaging 9.5 weeks for fracture recovery.
  • Post-surgery evaluations indicated significant improvements in ankle function, with high AOFAS scores, suggesting that ligament repair alongside fracture fixation is beneficial for recovery.
View Article and Find Full Text PDF

Microbial fuel cells (MFCs) have great potential to detect toxicity early. Study of toxicity sensors based on MFCs requires a large number of stable MFCs. However, the start-up time of MFCs is generally long, which limits research progress.

View Article and Find Full Text PDF

Biological acidification plays a crucial role in biological removal of organic compounds during petrochemical wastewater treatment. Trichloroacetaldehyde is a typical organic pollutant in petrochemical wastewater, however, no studies have been conducted on its effect on biological acidification. In this study, batch bioassays of volatile fatty acids were conducted to explore the inhibitory effect of trichloroacetaldehyde on biological acidification, the variations of key enzymes and extracellular polymeric substances under trichloroacetaldehyde shock, and the mechanism of trichloroacetaldehyde removal.

View Article and Find Full Text PDF

An innovative indicator for toxicity detection based on microbial fuel cells, average current inhibition rate (ACIR) was proposed. It was applied to the toxicity evaluation of three typical specific pollutants in petrochemical wastewater including copper(II), 2,4-dichlorophenol (2,4-DCP) and pyridine. ACIR which considered the entire process of toxic effects was proved to be more sensitive and wide-ranging than the conventional indicators.

View Article and Find Full Text PDF

The shock impact of toxic pollutants in petrochemical wastewater on the activated sludge in biological treatment system is a key factor restricting the treatment efficiency. It is necessary to evaluate the toxicity of these pollutants by appropriate methods. In this study, four test methods were used to evaluate the toxicity of characteristic organic pollutants in petrochemical wastewater including 2,4-dichlorophenol, formaldehyde and pyridine, as well as one frequently-used reference toxicant 3,5-dichlorophenol.

View Article and Find Full Text PDF

The performance of the microaeration hydrolytic acidification (MAHA) process and microbial community were investigated under different organic loading rates (OLRs) for the pretreatment of 2-butenal manufacture wastewater (2-BMW). Results indicated that OLRs had different impact on the performance of MAHA process. More than 23.

View Article and Find Full Text PDF

The influence of organic loading rate (OLR) on the performance of hydrolytic acidification process for treating 2-butenal manufacture wastewater was comprehensively studied, while its impact on microbial community was thoroughly investigated. The results demonstrated that over 21.0% of the average COD removal rate was observed in the range of OLR from 0.

View Article and Find Full Text PDF

The present study aimed to investigate the effects of levodopa (LEV) on cellular apoptosis in a rabbit model of steroid-associated necrosis of the femoral head (SANFH). A total of 44 healthy adult Chinese rabbits were randomly divided into three groups: Group A (n=15), administered a combination of lipopolysaccharide and hormone to establish the SANFH animal model; group B (n=15), SANFH animal model as in group A orally administered LEV (0.4 g/kg/day) on the day of injection; and group C (n=14), the control group.

View Article and Find Full Text PDF

The dissolved organic matters from 2-buternal manufacture wastewater were fractionated into seven fractions by ultra-filtration membrane separation. The amounts and structural compositions of organic compounds in different molecular weight ranges were characterized by dissolved organic carbon (DOC), ultraviolet spectrum (UV), Fourier transform infrared spectrometer (FT-IR) and gas chromatography with mass spectrometry (GC-MS). The results showed that the fraction of molecular weight less than 1×10 had the largest proportion in the wastewater, and occupied 88.

View Article and Find Full Text PDF

Herbicide wastewater is one of tne industrial wastewater, it has high salt content, poor biodegradability, biodegradable characteristics. Nitrogen-containing organic compounds are dominated in dissolved organic matter and dissolved organic matter of wastewater, BOD: COD = 0.045, C:N:P = 692:426:1.

View Article and Find Full Text PDF

A hydrolysis acidification (HA)-anoxic-oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m(3) h(-1)) was operated with the same parameters.

View Article and Find Full Text PDF

Petrochemical wastewater is of huge quantity released during the production and complicated contaminants of petrochemical wastewater will have immense negative impact on ecology environment. Three-dimensional excitation-emission matrix fluorescence(3D-EEM) was used to investigate the characteristic fluorescence of influent and effluent from each processing unit of Hydrolysis-acidification +A/O+ Contact-oxidation Process in a typical petrochemical wastewater treatment plant . The results showed that there were 4 fluorescence peaks named Peak A, Peak B, Peak D, Peak E in the spectrum chart of influent, they are around lambda(ex/lambda(em) = 220/300, 225/340, 270/300, 275/340 nm, the primary source of fluorescence organic matter(FOM) is industrial wastewater.

View Article and Find Full Text PDF

In view of synchronous fluorescence possessing the character of good selectivity, high sensitivity, less interference, etc. it can be used for simultaneous determination of multi-component mixtures of polycyclic aromatic hydrocarbons (PAHs). A new method of constant-wavelength synchronous fluorescence spectrometry to determine two naphthalene and phenanthrene of PAHs was developed in this study.

View Article and Find Full Text PDF