Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by excessive inflammation in the joints. Glucocorticoid drugs are used clinically to manage RA symptoms, while their dosage and duration need to be tightly controlled due to severe adverse effects. Using dexamethasone (DEX) as a model drug, we explored here whether peptide-guided delivery could increase the safety and therapeutic index of glucocorticoids for RA treatment.
View Article and Find Full Text PDFInefficient extravasation and penetration in solid tissues hinder the clinical outcome of nanoparticles (NPs). Recent studies have shown that the extravasation and penetration of NPs in solid tumor was mostly achieved via an active transcellular route. For this transport process, numerous efforts have been devoted to elucidate the endocytosis and subcellular trafficking of NPs.
View Article and Find Full Text PDFBackground: DNA mutations of diverse types provide the raw material required for phenotypic variation and evolution. In the case of crop species, previous research aimed to elucidate the changing patterns of repetitive sequences, single-nucleotide polymorphisms (SNPs), and small InDels during domestication to explain morphological evolution and adaptation to different environments. Additionally, structural variations (SVs) encompassing larger stretches of DNA are more likely to alter gene expression levels leading to phenotypic variation affecting plant phenotypes and stress resistance.
View Article and Find Full Text PDFAcute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions with excessive inflammation in the lung. Glucocorticoids had been widely used for ALI/ARDS, but their clinical benefit remains unclear. Here, we tackled the problem by conjugating prednisolone (PSL) with a targeting peptide termed CRV.
View Article and Find Full Text PDFLiposomes have been widely used as a drug delivery vector. One way to further improve its therapeutic efficacy is to increase the cell entry efficiency. Covalent conjugation with cell-penetrating peptides (CPPs) and other types of ligands has been the mainstream strategy to tackle this issue.
View Article and Find Full Text PDFBackground: This study aimed to explore the association of the presence and number of components of metabolic syndrome (MetS) with carotid atherosclerosis by measuring the presence of carotid plaque and total plaque area (TPA) in a population from a low-income area with high incidence of stroke of northern China.
Methods: A cross-sectional study was conducted in a rural area of Tianjin, China from April 2014 to January 2015. The presence of plaque and TPA measurement was determined by carotid ultrasound.
Cell entry is one of the common prerequisites for nanomaterial applications. Despite extensive studies on a homogeneous group of nanoparticles (NPs), fewer studies have been performed when two or more types of NPs were coadministrated. We previously described a synergistic cell entry process for two heterogeneous groups of NPs, where NPs functionalized with TAT (transactivator of transcription) peptide (T-NPs) stimulate the cellular uptake of coadministered unfunctionalized NPs (bystander NPs, B-NPs).
View Article and Find Full Text PDFChina is the largest rice-producing country, but the genomic landscape of rice diversity has not yet been clarified. In this study, we re-sequence 1070 rice varieties collected from China (400) and other regions in Asia (670). Among the six major rice groups (aus, indica-I, indica-II, aromatic, temperate japonica, and tropical japonica), almost all Chinese varieties belong to the indica-II or temperate japonica group.
View Article and Find Full Text PDFTo exert their therapeutic effects, nanoparticles (NPs) often need to travel into the tissues composed of multilayered cells. Accumulative evidence has revealed the crucial role of transcellular transport route (entry into one cell, exocytosis, and re-entry into another) in this process. While NP endocytosis and subcellular transport are intensively characterized, the exocytosis and re-entry steps are poorly understood, which becomes a barrier for NP delivery into complex tissues.
View Article and Find Full Text PDFBackground: Falls are one of the most common accidents in older adults, often leading to injury, disability and quality-of-life declines. Foot core function contributes to postural stability in most static postures and dynamic activities. As efficient foot core training, the intrinsic-foot-muscle exercise has been proposed to improve postural control.
View Article and Find Full Text PDFNucleotide-based drugs, such as antisense oligonucleotides (ASOs), have unique advantages in treating human diseases as they provide virtually unlimited ability to target any gene. However, their clinical translation faces many challenges, one of which is poor delivery to the target tissue . This problem is particularly evident in solid tumors.
View Article and Find Full Text PDFEfficient cellular uptake of nanoparticles (NPs) is necessary for the development of nanomedicine in biomedical applications. Recently, the coadministration of functionalized NPs (FNPs) was shown to stimulate the cellular uptake of nonfunctionalized NPs (termed bystander NPs, BNPs), which presents a new strategy to achieve synergistic delivery. However, a mechanistic understanding of the underlying mechanism is still lacking.
View Article and Find Full Text PDFIntroduction: To explore the relationship between metabolic syndrome (MetS) and cognitive impairment in a low-income and low-education population.
Methods: All residents aged ≥45 years in a low-income population in Tianjin, China, were eligible to participate in this study. The Mini-Mental State Examination (MMSE) scale was used to conduct a preliminary screening and assessment of the participants' cognitive statuses.
Covalent coupling with cell-penetrating peptides (CPPs) has been a common strategy to facilitate the cell entry of nanomaterial and other macromolecules. Though efficient, this strategy requires chemical modifications on nanomaterials, which is not always desired for their applications. Recent studies on a few cationic CPPs have revealed that they can stimulate the cellular uptake of nanoparticles (NPs) simply via co-administration (bystander manner), which bypasses the requirement of chemical modification.
View Article and Find Full Text PDFJ Control Release
January 2021
Endocytic pathways provide the primary route for therapeutic and diagnostic nanoparticles (NPs) to enter cells and subcellular compartments. A better understanding of these cell entry processes will not only aid in nanomaterial applications but also broaden our knowledge of cell biology. Among the endocytic routes, macropinocytosis has unique characteristics for engulfing NPs and other large cargo, yet its molecular machinery and involvement in NP uptake are far less characterized relative to other pathways.
View Article and Find Full Text PDFTwo subspecies of rice, Oryza sativa ssp. indica and O. sativa ssp.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
February 2021
NLRC5 is a member of the Nod-like receptor (NLR) family that has been found to be associated with the hepatic ischemia/reperfusion (I/R) injury. However, the role of NLRC5 in cerebral I/R has not been fully understood. The aim of the current study was to evaluate the effects of NLRC5 on primary hippocampal neuronal cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R).
View Article and Find Full Text PDFMost current nanoparticle-based PET tracers are radiolabeled through metal chelators conjugated on the nanoparticle surface. Metal chelation usually requires sophisticated optimization and may impact the physical or chemical properties of nanoparticles, which leads to the changes in their distribution and pharmacokinetics in vivo. A chelator-free radiolabeling approach is thus highly desirable.
View Article and Find Full Text PDFEntry into cells is necessary for many nanomaterial applications, and a common solution is to functionalize nanoparticles (NPs) with cell-penetrating ligands. Despite intensive studies on these functionalized NPs, little is known about their effect on cellular activities to engulf other cargo from the nearby environment. Here, we use NPs functionalized with TAT (transactivator of transcription) peptide (T-NPs) as an example to investigate their impact on cellular uptake of bystander cargo.
View Article and Find Full Text PDFMacrophages play important and diverse roles during cancer progression. However, cancer therapies based on macrophage modulation are lacking in tools that can recognize and deliver therapeutic payloads to macrophages in a tumor-specific manner. As a result, treatments tend to interfere with normal macrophage functions in healthy organs.
View Article and Find Full Text PDFThe incidence of adverse effects and pathogen resistance encountered with small molecule antibiotics is increasing. As such, there is mounting focus on immunogene therapy to augment the immune system's response to infection and accelerate healing. A major obstacle to in vivo gene delivery is that the primary uptake pathway, cellular endocytosis, results in extracellular excretion and lysosomal degradation of genetic material.
View Article and Find Full Text PDFAims: Role of hyperoside in protecting cardiomyocytes from ischemia/reperfusion induced injury has been proved. However, possible protecting mechanisms remain unclear. To fix the problem, an essential pro-apoptotic protein Bnip3 was studied in our experiments.
View Article and Find Full Text PDFBackground: Primary angle-closure glaucoma (PACG) is a common eye disease and a common cause of blindness. Inappropriate medical decisions severely affect the prognosis. This study investigated decision-making under risk in PACG patients.
View Article and Find Full Text PDF