Publications by authors named "Hongbin Pu"

The heterogeneous and dynamic microenvironment of biofilms complicates bacterial infection treatment. Nanozyme catalytic therapy has recently been promising in treating biofilm infections. However, active nanozymes designed with the required precision targeting the biofilm microenvironment are lacking.

View Article and Find Full Text PDF

Malachite green (MG)-contaminated aquatic products pose a serious threat to animal and human health. Hence, a novel recyclable surface-enhanced Raman scattering (SERS) substrate based on AuNPs/TiO/TiC heterostructures was developed for the detection and degradation of MG in aquatic products. Specifically, AuNPs/TiO/TiC heterostructures were synthesized by in situ oxidation and electrostatic adsorption based on TiC nanosheets.

View Article and Find Full Text PDF

The freezing point (FP) is an important quality indicator of the superchilled meat. Currently, the potential of hyperspectral imaging (HSI) for predicting beef FP as affected by multiple freeze-thaw (F-T) cycles was explored. Correlation analysis revealed that the FP had a negative correlation with the proportion of bound water (P) and a positive correlation with the proportion of immobilized water (P).

View Article and Find Full Text PDF

For addressing the challenges of strong affinity SERS substrate to organophosphorus pesticides (OPs), herein, a rapid water-assisted layer-by-layer heteronuclear growth method was investigated to grow uniform UiO-66 shell with controllable thickness outside the magnetic core and provide abundant defect sites for OPs adsorption. By further assembling the tailored Au@Ag, a highly sensitive SERS substrate FeO-COOH@UiO-66/Au@Ag (FCUAA) was synthesized with a SERS enhancement factor of 2.11 × 10.

View Article and Find Full Text PDF

The unreasonable use of organophosphorus pesticides leads to excessive pesticide residues in food, seriously threatening public health, and the potential of surface-enhanced Raman spectroscopy (SERS) technology, incorporating a metal-organic framework, is substantial for the rapid detection of trace pesticide residues. Here, a novel FeO@NH-MIL-101(Fe)@Ag (FNMA) SERS nanosensor was developed. Results indicated that the FNMA had a high enhancement factor of 1.

View Article and Find Full Text PDF

Dimethoate contaminants in food pose a threat to human health. Rapid and sensitive trace detection methods are required to keep food safe. In this study, a novel fluorescent aptasensor was developed for the sensitive detection of dimethoate based on carbon quantum dots labeled with double-stranded DNA (CQDs-apt-cDNA) and TiCT flakes.

View Article and Find Full Text PDF

Rice grains are often infected by Sitophilus oryzae due to improper storage, resulting in quality and quantity losses. The efficacy of terahertz time-domain spectroscopy (THz-TDS) technology in detecting Sitophilus oryzae at different stages of infestation in stored rice was employed in the current research. Terahertz (THz) spectra for rice grains infested by Sitophilus oryzae at different growth stages were acquired.

View Article and Find Full Text PDF

Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health.

View Article and Find Full Text PDF

High-performance plasmonic substrates have recently attracted much research attention. Herein, a three-dimensional gold nanoparticles (AuNPs) spherical liquid array (SLA) with high "hot spots" and tunable nanometer gap by optimizing the proportion of AuNPs colloids over chloroform was synthesized based on a water-oil interfacial self-assembly strategy. The substrate demonstrated excellent surface-enhanced Raman scattering (SERS) performance using tetrathiafulvalene and rhodamine 6G (R6G) as probe molecules.

View Article and Find Full Text PDF

A new type of durian-shaped FeO@Au@Ag@Au (DFAAA) multilayer core-shell composite was prepared as an efficient surface-enhanced Raman scattering (SERS) substrate. The optimization process and SERS enhancement mechanism of the substrate were further explained with finite-difference time-domain simulation. The dense and uniform spiny array on the DFAAA surface had abundant "hot spots", greatly improving sensitivity, uniformity and reproducibility, with a Raman enhancement factor of 3.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) contamination severely threatens human and animal health, it is thus critical to construct a strategy for its rapid, accurate, and visual detection. Herein, a multimodal biosensor was proposed based on CRISPR/Cas12a cleaved G-quadruplex (G4) for AFB1 detection. Briefly, specific binding of AFB1 to the aptamer occupied the binding site of the complementary DNA (cDNA), and cDNA then activated Cas12a to cleave G4 into fragments.

View Article and Find Full Text PDF

The geographical indication of pericarpium citri reticulatae (PCR) is very important in grading the quality and price of PCRs. Therefore, terahertz time-domain spectroscopy (THz-TDS) technology combined with convolutional neural networks (CNN) was proposed to distinguish PCRs of different origins without damage in this study. The one-dimensional CNN (1D-CNN) model with an accuracy of 82.

View Article and Find Full Text PDF

In this study, a high-performance, stable and homogeneous Au@AgNRs/CMC/qPCR flexible film surface-enhanced Raman scattering (SERS) substrate was constructed by synergistically stabilizing and protecting bimetallic core-shell Au@Ag nanorods (Au@AgNRs) with carboxymethylcellulose (CMC) and fluorescent-quantitative-polymerase-chain-reaction (qPCR) film. The network structure of CMC immobilized and aligned Au@AgNRs through coordination of carboxyl groups with surface Ag atoms to provide intensive and stable 'hot spots', and the qPCR bilayer film performed as carrier and barrier to protect Au@AgNRs from oxidation, humidity and optical damage and improved the robustness and stability. The Au@AgNRs/CMC/qPCR film was used for in-situ extraction and SERS detection of thiabendazole on nectarine (0.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) technology has been revived and developed with the introduction of metal-organic frameworks (MOFs), while more valuable properties of MOFs for SERS substrates remain largely unexplored. This work constructed a new SERS substrate FeO@UiO-66(Zr)@Ag nanoparticles (FUAs) with excellent SERS detection sensitivity, uniformity, reproducibility and stability, exhibiting a high Raman enhancement factor (5.62 × 10), low limit of detection (LOD, 2.

View Article and Find Full Text PDF

For survival and quality of human life, the search for better ways to ensure food safety is constant. However, food contaminants still threaten human health throughout the food chain. In particular, food systems are often polluted with multiple contaminants simultaneously, which can cause synergistic effects and greatly increase food toxicity.

View Article and Find Full Text PDF

Cellulose material holds considerable promise for effective surface-enhanced Raman scattering (SERS) substrate construction due to its extensive availability, chemically modifying capacity, ease of manufacture, high flexibility and low optical activity. A large-area, high-sensitivity, stable and uniform Au@Ag nanorods (NRs)-CMC substrate was successfully developed via electrostatic repulsion by using negatively-charged core-shell Au@Ag NRs as SERS active plasmonic nanomaterial, combined with negatively-charged carboxymethylcellulose (CMC) hydrogel for nanoparticles stabilization, homodisperse and protection. The obtained Au@Ag NRs-CMC substrate showed excellent sensitivity for the detection of thiram residues in fruits containing low and abundant pigment interferents, such as apples and blueberries, with detection limits of 58 and 78 ppb, respectively.

View Article and Find Full Text PDF

Pericarpium Citri Reticulatae (PCR) in longer storage years possess higher medicinal values, but their differentiation is difficult due to similar morphological characteristics. Therefore, this study investigated the feasibility of using terahertz time-domain spectroscopy (THz-TDS) combined with a convolutional neural network (CNN) to identify PCR samples stored from 1 to 20 years. The absorption coefficient and refractive index spectra in the range of 0.

View Article and Find Full Text PDF

Controlling the shape and internal strain of nanowires (NWs) is critical for their safe and reliable use and for the exploration of novel functionalities of nanodevices. In this work, transmission electron microscopy was employed to examine bent Si NWs prepared by asymmetric electron-beam evaporation. The asymmetric deposition of Cr caused the formation of nanosized amorphous-Si domains; the non-crystallinity of the Si NWs was controlled by the bending radius.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) substrates based on metal/semiconductors have attracted much attention due to their excellent photocatalytic activity and SERS performance. However, they generally exhibit low light utilization and photocatalytic efficiencies. Herein, molybdenum disulfide coated titanium dioxide modified with gold nanoparticles (MoS@TiO@Au) as a heterojunction-based recyclable SERS platform was fabricated for the efficient determination of fungicides.

View Article and Find Full Text PDF

Food aflatoxin B1 (AFB1) contamination greatly threatens human health and its sensitive determination is imperative. In this study, a surface-enhanced Raman scattering (SERS) and fluorescence dual-signal aptasensor was constructed for sensitive AFB1 detection in peanuts, walnuts, and almonds samples. Fluorescent dye cy5 was used as fluorophore and Raman reporter, while polyethyleneimine modified Ag coating magnetic nanoparticles (MNP@Ag-PEI) were utilized to absorb the cy5 modified aptamer (apt-cy5).

View Article and Find Full Text PDF

As there is growing interest in process control for quality and safety in the meat industry, by integrating spectroscopy and imaging technologies into one system, hyperspectral imaging, or chemical or spectroscopic imaging has become an alternative analytical technique that can provide the spatial distribution of spectrum for fast and nondestructive detection of meat safety. This review addresses the configuration of the hyperspectral imaging system and safety indicators of muscle foods involving biological, chemical, and physical attributes and other associated hazards or poisons, which could cause safety problems. The emphasis focuses on applications of hyperspectral imaging techniques in the safety evaluation of muscle foods, including pork, beef, lamb, chicken, fish and other meat products.

View Article and Find Full Text PDF

With the growing popularity of the non-destructive technique, surface-enhanced Raman spectroscopy (SERS) demands a highly sensitive and reproducible plasmonic nanoparticles substrate. In this study, a novel bimetallic core-shell nanoparticles (Au@Ag@mSiONP) substrate consisting of a gold core, silver shell, and a mesoporous silica coating was synthesized. The mesoporous coating structure was created by employing template molecules such as surfactant and their subsequent removal allowing selective screening based on the size of analyte molecules.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) contamination in food threatens global food safety, and rapid quantitative detection of AFB1 remains a challenge. Herein, a novel fluorescence biosensor was developed for AFB1 detection based on CRISPR/Cas12a and MXenes. Specifically, the well-designed activator was locked by dual-AFB1 aptamers, Cas12a was directly linked to crRNA to form inactivated complexes, and MXenes efficiently adsorbed FAM fluorophore-modified single-stranded DNA (ssDNA-FAM), quenching its fluorescence.

View Article and Find Full Text PDF

Rapid evaluation of the metabolic activity of microorganisms is crucial in the assessment of the disinfection ability of various antimicrobial agents in the food industry. In this study, surface-enhanced Raman spectroscopy combined with isotope probing was employed for the analysis of the disinfection of single bacterial cells in the chicken carcass wash water. The Raman signals from single Escherichia coli O157:H7 cells were enhanced by in situ synthesis of silver nanoparticles.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionka0jv32uaghvi78o9mu6epfna6uhk41q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once