Publications by authors named "HongXiang Xue"

Pig farming is a crucial sector in global animal husbandry. The weight and body dimension data of pigs reflect their growth and development status, serving as vital metrics for assessing their progress. Presently, pig weight and body dimensions are predominantly measured manually, which poses challenges such as difficulties in herding, stress responses in pigs, and the control of zoonotic diseases.

View Article and Find Full Text PDF

The core body temperature serves as a pivotal physiological metric indicative of sow health, with rectal thermometry prevailing as a prevalent method for estimating core body temperature within sow farms. Nonetheless, employing contact thermometers for rectal temperature measurement proves to be time-intensive, labor-demanding, and hygienically suboptimal. Addressing the issues of minimal automation and temperature measurement accuracy in sow temperature monitoring, this study introduces an automatic temperature monitoring method for sows, utilizing a segmentation network amalgamating YOLOv5s and DeepLabv3+, complemented by an adaptive genetic algorithm-random forest (AGA-RF) regression algorithm.

View Article and Find Full Text PDF

Sow body condition scoring has been confirmed as a vital procedure in sow management. A timely and accurate assessment of the body condition of a sow is conducive to determining nutritional supply, and it takes on critical significance in enhancing sow reproductive performance. Manual sow body condition scoring methods have been extensively employed in large-scale sow farms, which are time-consuming and labor-intensive.

View Article and Find Full Text PDF

The measurement of pig weight holds significant importance for producers as it plays a crucial role in managing pig growth, health, and marketing, thereby facilitating informed decisions regarding scientific feeding practices. On one hand, the conventional manual weighing approach is characterized by inefficiency and time consumption. On the other hand, it has the potential to induce heightened stress levels in pigs.

View Article and Find Full Text PDF

The visible light induced, photocatalysts or photoabsorbing EDA complexes mediated cleavage of pyridinium C-N bond were reported in the past years. Here, we report an ionic compound promote homolytic cleavage of pyridinium C-N bond by exploiting the photonic energy from visible light. This finding is successfully applied in deaminative hydroalkylation of a series of alkenes including naturally occurring dehydroalanine, which provides an efficient way to prepare β-alkyl substituted unnatural amino acids under mild and photocatalyst-free conditions.

View Article and Find Full Text PDF

FKBP51 is well-known as a cochaperone of Hsp90 machinery and implicated in many human diseases including stress-related diseases, tau-mediated neurodegeneration and cancers, which makes FKBP51 an attractive drug target for the therapy of FKBP51-associated diseases. However, it has been reported that only nature product rapamycin, cyclosporine A, FK506 and its derivatives exhibit good binding affinities when bound to FKBP51 by now. Given the advantages of peptide-inhibitors, we designed and obtained 20 peptide-inhibitor hits through structure-based drug design.

View Article and Find Full Text PDF

Disclosed herein is the visible-light-promoted deaminative C(sp )-H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional-group tolerance provide a general strategy for the efficient preparation of unnatural α-amino acids and precise modification of peptides with unnatural α-amino-acid residues. Mechanistic studies suggest that visible-light-promoted intermolecular charge transfer within a glycine-Katritzky salt electron donor-acceptor (EDA) complex induces a single-electron transfer process without the assistance of photocatalyst.

View Article and Find Full Text PDF

Accumulating evidence suggests inhibiting neuroinflammation as a potential target in therapeutic or preventive strategies for Alzheimer's disease (AD). MAPK-activated protein kinase II (MK2), downstream kinase of p38 mitogen activated protein kinase (MAPK) p38 MAPK, was unveiled as a promising option for the treatment of AD. Increasing evidence points at MK2 as involved in neuroinflammatory responses.

View Article and Find Full Text PDF