Metagenomic next-generation sequencing (mNGS) has been used broadly for pathogens detection of infectious diseases. However, there is a lack of method for the absolute quantitation of pathogens by mNGS. We compared the quantitative efficiency of three mNGS internal controls (ICs) , phages, and artificial DNA sequence and developed the most applicable strategies for pathogen quantitation via mNGS in central nervous system infection.
View Article and Find Full Text PDFMetagenomic sequencing (mNGS) is a powerful diagnostic tool to detect causative pathogens in clinical microbiological testing owing to its unbiasedness and substantially reduced costs. Rapid and accurate classification of metagenomic sequences is a critical procedure for pathogen identification in dry-lab step of mNGS test. However, clinical practices of the testing technology are hampered by the challenge of classifying sequences within a clinically relevant timeframe.
View Article and Find Full Text PDFIntroduction: The diagnosis of infection-caused fever of unknown origin (FUO) is still challenging, making it difficult for physicians to provide an early effective therapy. Therefore, a novel pathogen detection platform is needed. Metagenomic next-generation sequencing (mNGS) provides an unbiased, comprehensive technique for the sequence-based identification of pathogenic microbes, but the study of the diagnostic values of mNGS in FUO is still limited.
View Article and Find Full Text PDFThe high-resolution feature of single-cell transcriptome sequencing technology allows researchers to observe cellular gene expression profiles at the single-cell level, offering numerous possibilities for subsequent biomedical investigation. However, the unavoidable technical impact of high missing values in the gene-cell expression matrices generated by insufficient RNA input severely hampers the accuracy of downstream analysis. To address this problem, it is essential to develop a more rapid and stable imputation method with greater accuracy, which should not only be able to recover the missing data, but also effectively facilitate the following biological mechanism analysis.
View Article and Find Full Text PDFBackground: In COVID-19 patients, information regarding superinfection, antimicrobial assessment, and the value of metagenomic sequencing (MS) could help develop antimicrobial stewardship.
Method: This retrospective study analyzed 323 laboratory-confirmed COVID-19 patients for co-infection rate and antimicrobial usage in the Shanghai Public Health Clinical Center (SPHCC) from January 23rd to March 14th 2020. The microbiota composition was also investigated in patients with critically severe COVID-19.
Comput Struct Biotechnol J
April 2021
The high-throughput genome-wide chromosome conformation capture (Hi-C) method has recently become an important tool to study chromosomal interactions where one can extract meaningful biological information including P(s) curve, topologically associated domains, A/B compartments, and other biologically relevant signals. Normalization is a critical pre-processing step of downstream analyses for the elimination of systematic and technical biases from chromatin contact matrices due to different mappability, GC content, and restriction fragment lengths. Especially, the problem of high sparsity puts forward a huge challenge on the correction, indicating the urgent need for a stable and efficient method for Hi-C data normalization.
View Article and Find Full Text PDFis an opportunistic pathogenic fungus commonly reported in southeast Asia. infection predominantly occurs in patients with immunodeficiency and can be fatal if diagnosis and treatment were delayed. Conventional diagnosis of infection relies heavily on tissue culture and histologic analysis, which is time consuming and has limited positive rate.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Pulmonary infections are among the most common and important infectious diseases due to their high morbidity and mortality, especially in older and immunocompromised individuals. However, due to the limitations in sensitivity and the long turn-around time (TAT) of conventional diagnostic methods, pathogen detection and identification methods for pulmonary infection with greater diagnostic efficiency are urgently needed. In recent years, unbiased metagenomic next generation sequencing (mNGS) has been widely used to detect different types of infectious pathogens, and is especially useful for the detection of rare and newly emergent pathogens, showing better diagnostic performance than traditional methods.
View Article and Find Full Text PDFIdentifying biomarkers that are associated with different types of cancer is an important goal in the field of bioinformatics. Different researcher groups have analyzed the expression profiles of many genes and found some certain genetic patterns that can promote the improvement of targeted therapies, but the significance of some genes is still ambiguous. More reliable and effective biomarkers identification methods are then needed to detect candidate cancer-related genes.
View Article and Find Full Text PDFBackground: To evaluate the diagnostic accuracy of metagenomic next-generation sequencing (mNGS) for active tuberculosis (TB).
Methods: We retrospectively collected 820 samples at Zhongshan Hospital, Fudan University in Shanghai, China, between 1 April 2017 and 31 March 2018. They were classified into TB cases (125, 15.
Background: Metagenomic next-generation sequencing (mNGS), with its comprehensiveness, is widely applied in microbiological diagnosis. Etiological diagnosis is of paramount clinical importance in patients with skin and soft tissue infections (SSTIs). However, the clinical application of mNGS in SSTIs is relatively less studied.
View Article and Find Full Text PDFBackground: COVID-19 (coronavirus disease 2019) has caused a major epidemic worldwide; however, much is yet to be known about the epidemiology and evolution of the virus partly due to the scarcity of full-length SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genomes reported. One reason is that the challenges underneath sequencing SARS-CoV-2 directly from clinical samples have not been completely tackled, i.e.
View Article and Find Full Text PDFPseudorabies virus (PRV) is known to cause severe encephalitis in juvenile pigs and various non-native hosts; recent evidences suggest that PRV might cause encephalitis in humans. In a multicenter cohort study in China, next-generation sequencing of cerebrospinal fluid (CSF) was performed to detect pathogens in all patients with clinically suspected central nervous system infections. This study involved all the patients whose CSF samples were positive for PRV-DNA; their clinical features were evaluated, and species-specific PCR and serological tests were sequentially applied for validation.
View Article and Find Full Text PDFNext-generation sequencing (NGS) is an emerging method with the potential of pan-pathogen screening. This study described a case of eosinophilic meningitis (EoM) with enzyme-linked immunosorbent assay (ELISA)-negative results for Angiostrongylus cantonensis (A. cantonensis), Trichinella spiralis and Paragonimus westermani and a positive identification of A.
View Article and Find Full Text PDFBackground: Accurate etiology diagnosis is crucial for central nervous system infections (CNS infections). The diagnostic value of metagenomic next-generation sequencing (mNGS), an emerging powerful platform, remains to be studied in CNS infections.
Methods: We conducted a single-center prospective cohort study to compare mNGS with conventional methods including culture, smear and etc.
Background: Next-generation sequencing (NGS) is a comprehensive approach for sequence-based identification of pathogens. However, reports on the use of NGS in patients with immunosuppression are scarce, especially in subjects with negative microbiological results.
Methods: In this study, NGS was performed on samples obtained from 108 anonymized patients with suspected infection undergoing immunosuppressive corticosteroid therapy.
Circulating in China and 158 other countries and areas, the ongoing COVID-19 outbreak has caused devastating mortality and posed a great threat to public health. However, efforts to identify effectively supportive therapeutic drugs and treatments has been hampered by our limited understanding of host immune response for this fatal disease. To characterize the transcriptional signatures of host inflammatory response to SARS-CoV-2 (HCoV-19) infection, we carried out transcriptome sequencing of the RNAs isolated from the bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells (PBMC) specimens of COVID-19 patients.
View Article and Find Full Text PDFBackground: In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) has become a global pandemic with a high rate of transmission. Currently, there is a lack of vaccines and specific drugs for this newly-emerged virus. Timely diagnosis and treatment, as well as isolation of patients and virus carriers, contribute to the effective prevention and control of this epidemic.
View Article and Find Full Text PDFTuberculosis (TB) is now the leading cause of death from infectious disease. Rapid screening and diagnostic methods for TB are urgently required. Rapid development of metagenomics next-generation sequencing (mNGS) in recent years showed promising and satisfying application of mNGS in several kinds of infectious diseases.
View Article and Find Full Text PDFObjectives: Current evidence suggests that microorganisms are associated with neoplastic diseases; however, the role of the airway microbiome in lung cancer remains unknown. To investigate the taxonomic profiles of the lower respiratory tract (LRT) microbiome in patients with lung cancer.
Materials And Methods: BALF samples were collected in a discovery set comprising 150 individuals, including 91 patients with lung cancer, 29 patients with nonmalignant pulmonary diseases and 30 healthy subjects, and an independent validation set including 85 participants.
Objectives: Microbiological diagnosis is essential during clinical management of focal infections. Metagenomic next generation sequencing (mNGS) has been reported as a promising diagnostic tool in infectious diseases. However, little is known about the clinical utility of mNGS in focal infections.
View Article and Find Full Text PDF