Publications by authors named "HongFeng Jiang"

Background: Metabolic syndrome heightens cardiovascular disease risk primarily through increased arterial stiffness. We previously demonstrated the involvement of YAP (Yes-associated protein) in high-fat/high-sucrose diet (HFHSD)-induced arterial stiffness via modulation of PPM1B (protein phosphatase Mg/Mn-dependent 1B)-lysine63 (K63) deubiquitination. In this study, we aimed to elucidate the role and mechanisms underlying PPM1B deubiquitination in HFHSD-induced arterial stiffness.

View Article and Find Full Text PDF

Objectives: The objective of this study was to analyse the global, regional, and national burdens of ischaemic heart disease (IHD) in adults aged 15-49 years and its attributable risk factors from 1990 to 2019.

Study Design: Epidemiological study.

Methods: Data were obtained from the Global Burden of Disease (GBD) Study 2019.

View Article and Find Full Text PDF

Background: Gut microbiota and their metabolites play a regulatory role in skeletal muscle growth and development, which be known as gut-muscle axis. 3-phenylpropionic acid (3-PPA), a metabolite produced by colonic microorganisms from phenylalanine in the gut, presents in large quantities in the blood circulation. But few study revealed its function in skeletal muscle development.

View Article and Find Full Text PDF

Metabolites derived from the intestinal microbiota play an important role in maintaining skeletal muscle growth, function, and metabolism. Here, we found that D-malate (DMA) is produced by mouse intestinal microorganisms and its levels increase during aging. Moreover, we observed that dietary supplementation of 2% DMA inhibits metabolism in mice, resulting in reduced muscle mass, strength, and the number of blood vessels, as well as the skeletal muscle fiber type I/IIb ratio.

View Article and Find Full Text PDF

Background: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated.

View Article and Find Full Text PDF

Endothelial cells (EC) play essential roles in retinal vascular homeostasis. This study aimed to characterize retinal EC heterogeneity and functional diversity using single-cell RNA sequencing. Systematic analysis of cellular compositions and cell-cell interaction networks identified a unique EC cluster with high inflammatory gene expression in diabetic retina; sphingolipid metabolism is a prominent aspect correlated with changes in retinal function.

View Article and Find Full Text PDF

Perforating well is one of the main production wells in reservoir development. Perforating effect directly affects well production, so the optimization of perforating parameters has attracted wide attention. Because pressure difference serves as the driving force for fluid flowing from formation to wellbore, it is important to understand the composition of production pressure difference in perforating well, which can guide the optimization of perforating parameters and the evaluation of perforating effect.

View Article and Find Full Text PDF

Background: The aim of study was to observe the effect of increased lactate levels during high-intensity interval training (HIIT) on protein lactylation, identify the target protein, and investigate the regulatory effect of lactylation on the function of the protein.

Methods: C57B/L6 mice were divided into 3 groups: the control group, HIIT group, and dichloroacetate injection + HIIT group (DCA + HIIT). The HIIT and DCA + HIIT groups underwent 8 weeks of HIIT treatment, and the DCA + HIIT group was injected DCA before HIIT treatment.

View Article and Find Full Text PDF

Introduction: High-altitude pulmonary edema (HAPE) is a severe and potentially fatal condition with limited treatment options. Although ceramide kinase (CERK)-derived ceramide-1-phosphate (C1P) has been demonstrated to offer protection against various pulmonary diseases, its effects on HAPE remain unclear.

Objectives: Our study aimed to investigate the potential role of CERK-derived C1P in the development of HAPE and to reveal the molecular mechanisms underlying its protective effects.

View Article and Find Full Text PDF

Background: Worsening heart failure (WHF) is a heterogeneous clinical syndrome with poor prognosis. More effective risk stratification tools are required to identify high-risk patients. Evidence suggest that aberrant ceramide accumulation can be affected by heart failure risk factors and as a driver of tissue damage.

View Article and Find Full Text PDF

Purpose: The diagnosis of obstructive sleep apnea (OSA) relies on time-consuming and complicated procedures which are not always readily available and may delay diagnosis. With the widespread use of artificial intelligence, we presumed that the combination of simple clinical information and imaging recognition based on facial photos may be a useful tool to screen for OSA.

Methods: We recruited consecutive subjects suspected of OSA who had received sleep examination and photographing.

View Article and Find Full Text PDF

Unlabelled: Since the authors are not responding to the editor’s requests to fulfill the editorial requirement, therefore, the article has been withdrawn. Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.

View Article and Find Full Text PDF

Objective: This study was aimed to investigate the role of interleukin-1β (IL-1β) in cigarette smoke extract (CSE)-induced apoptosis in vascular smooth muscle cells and the underlying mechanism in a rat derived cell line.

Methods: Rat thoracic aortic smooth muscle cells (A7r5) were divided into six groups including control, CSE (model), CSE+ overexpression empty vector (OvExp-EV), CSE+IL-1β knockdown (KD), and CSE+ IL-1β knockdown empty vector (KD-EV). The mRNA expression levels of IL-1β and pregnancy-associated plasma protein A (PAPP-A) were detected by quantitative polymerase chain reaction (qPCR).

View Article and Find Full Text PDF

Objective: To investigate the effectiveness of microscope assisted anterior lumbar discectomy and fusion (ALDF) and mobile microendoscopic discectomy assisted lumbar interbody fusion (MMED-LIF) for lumbar degenerative diseases.

Methods: A clinical data of 163 patients with lumbar degenerative diseases who met the criteria between January 2018 and December 2020 was retrospectively analyzed. Fifty-three cases were treated with microscope assisted ALDF (ALDF group) and 110 cases with MMED-LIF (MMED-LIF group).

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a fatal vascular disease. Vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of AAA. Increasing evidence has shown that Yes-associated protein (YAP) is involved in diverse vascular diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Subendothelial macrophages internalizing modified lipids and forming foam cells are key features of atherosclerosis, with deubiquitinating enzymes (DUBs) like USP9X playing a critical but not fully understood role in this process.
  • Researchers discovered that USP9X suppresses lipid uptake in macrophages, and its reduced expression is linked to increased lipid deposition and inflammation in atherosclerotic lesions in both humans and mouse models.
  • The study highlights USP9X's role in regulating the scavenger receptor SR-A1, suggesting that targeting USP9X might lead to new therapeutic strategies for treating atherosclerosis.
View Article and Find Full Text PDF

Phospholamban (PLN) is a key regulator that controls the function of the sarcoplasmic reticulum (SR) and is required for the regulation of cardiac contractile function. Although PLN-deficient mice demonstrated improved cardiac function, PLN loss in humans can result in dilated cardiomyopathy (DCM) or heart failure (HF). The CRISPR-Cas9 technology was used to create a PLN knockout human induced pluripotent stem cell (hiPSC) line in this study.

View Article and Find Full Text PDF
Article Synopsis
  • * Alcohol depletes vitamin A in the liver, and this study investigates whether this depletion is primarily due to the action of specific enzymes called Cytochrome P450 (CYPs), particularly CYP2E1.
  • * Results show that chronic alcohol intake leads to a significant decrease in vitamin A levels in the liver and is correlated with the increased expression of multiple retinoid-catabolizing CYPs, including CYP26A1 and CYP26B1, in mice.
View Article and Find Full Text PDF

Atherosclerosis preferentially occurs in atheroprone vasculature where human umbilical vein endothelial cells are exposed to disturbed flow. Disturbed flow is associated with vascular inflammation and focal distribution. Recent studies have revealed the involvement of epigenetic regulation in atherosclerosis progression.

View Article and Find Full Text PDF
Article Synopsis
  • The COL1A2 gene's loss of function is linked to conditions like osteogenesis imperfecta (OI) and certain types of Ehlers-Danlos syndrome.
  • Researchers created a homozygous COL1A2 human embryonic stem cell line (WAe009-A-72) using CRISPR/Cas9 to study its significance in these disorders.
  • The WAe009-A-72 cell line maintained normal characteristics and showed promise for investigating the role of COL1A2 in related diseases.
View Article and Find Full Text PDF

Obstructive sleep apnea is an atherogenesis factor of which chronic intermittent hypoxia is a prominent feature. Chronic intermittent hypoxia (CIH) exposure can sufficiently activate the sympathetic system, which acts on the β3 adrenergic receptors of brown adipose tissue (BAT). However, the activity of BAT and its function in CIH-induced atherosclerosis have not been fully elucidated.

View Article and Find Full Text PDF

Myosin heavy chain 7 (MYH7) encodes the human heart myosin heavy chain subunit, which plays an important role in myocardial contraction. MYH7 is the main pathogenic gene that causes Hypertrophic cardiomyopathy (HCM) and Dilated cardiomyopathy (DCM). In this experiment, a MYH7 homozygous knockout human embryonic stem cell (hESC) line, WAe009-A-69, was generated using an episomal vector-based CRISPR/Cas9 system.

View Article and Find Full Text PDF

Objective: Discectomy remains the classic procedure for treating lumbar intervertebral disc (IVD) herniation, but the occurrence of defects after discectomy is thought to be an important cause generating recurrent and accelerated IVD degeneration. Previous studies attempted suture of the annulus fissure, but the validity of this technique on restraining the degenerative process is controversial. On the other hand, cell therapies have been shown in multiple clinical and basic studies.

View Article and Find Full Text PDF

Heart disease, including coronary artery disease, myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathies, is the leading causes of death worldwide. The Hippo pathway is a central controller for organ size and tissue growth, which plays a pivotal role in determining cardiomyocytes and nonmyocytes proliferation, regeneration, differentiation, and apoptosis. In this review, we summarize the effects of the Hippo pathway on heart disease and propose potential intervention targets.

View Article and Find Full Text PDF

Purpose: It has been established that obstructive sleep apnea (OSA) is an independent risk factor for atherosclerosis. Chronic intermittent hypoxia (CIH) activates sympathoadrenal system and upregulates β3 adrenergic receptor (β3 AR). However, the effect of selective β3 AR agonist mirabegron in CIH-induced atherosclerosis remains unknown.

View Article and Find Full Text PDF