Quantitative structure-activity relationships (QSARs) have been used to predict mixture toxicity. However, current research faces gaps in achieving accurate predictions of the mixture toxicity of azole fungicides. To address this gap, the application of machine learning (ML) algorithms has emerged as an effective strategy.
View Article and Find Full Text PDFA magnetic activated carbon adsorbent named NiFeO@AC was synthesized by modifying activated carbon with NiFeO and used for the adsorption of Cr(Ⅵ) ions from waste water. The influencing factors, adsorption kinetics, and adsorption isotherms of Cr(Ⅵ) adsorption by the adsorbent were investigated. The results showed that the removal rate of Cr(Ⅵ) adsorption by NiFeO@AC reached 96.
View Article and Find Full Text PDFEucalyptus biochar(BC) was prepared and potassium permanganate was used to modify the biochar(KBC). Static adsorption experiments on Pb(Ⅱ) in aqueous solution were carried out to investigate the effects of pH, adsorbent dosing, adsorption time, temperature, and initial concentration on the adsorption of Pb(Ⅱ). The results showed that the optimum pH was 5 while the adsorption reached saturation after 6 h.
View Article and Find Full Text PDFThe potential toxicity of haloacetic acids (HAAs), common disinfection by products (DBPs), has been widely studied; but their combined effects on freshwater green algae remain poorly understood. The present study was conducted to investigate the toxicological interactions of HAA mixtures in the green alga Raphidocelis subcapitata and predict the DBP mixture toxicities based on concentration addition, independent action, and quantitative structure-activity relationship (QSAR) models. The acute toxicities of 6 HAAs (iodoacetic acid [IAA], bromoacetic acid [BAA], chloroacetic acid [CAA], dichloroacetic acid [DCAA], trichloroacetic acid [TCAA], and tribromoacetic acid [TBAA]) and their 68 binary mixtures to the green algae were analyzed in 96-well microplates.
View Article and Find Full Text PDFCurrently, few studies have investigated the joint toxicity mechanism of azole fungicides at different exposure times and mixed at the relevant environmental concentrations. In this study, three common azole fungicides, namely, myclobutanil (MYC), propiconazole (PRO), and tebuconazole (TCZ), were used in studying the toxic mechanisms of a single substance and its ternary mixture exposed to ambient concentrations of Chlorella pyrenoidosa. Superoxide dismutase (SOD), catalase (CAT), chlorophyll a (Chla), and total protein (TP), were used as physiological indexes.
View Article and Find Full Text PDFSulfonamide antibiotics are contaminants of emerging concern (CEC). These CECs raise considerable alarm because they are commonly present in water environments. Studies on the environmental existence of CECs in karst areas of Guilin (Southern China) have yet to be reported.
View Article and Find Full Text PDFAromatic halogenated chemicals are an unregulated class of byproducts (DBPs) generated from disinfection processes in the water environment. Information on the toxicological interactions, such as antagonism and synergism, present in DBP mixtures remains limited. This study aimed to determine the toxicological effects of aromatic halogenated DBP mixtures on the freshwater bacterium Vibrio qinghaiensis sp.
View Article and Find Full Text PDFA suitable model to predict the toxicity of current and continuously emerging disinfection by-products (DBPs) is needed. This study aims to establish a reliable model for predicting the cytotoxicity of DBPs to Chinese hamster ovary (CHO) cells. We collected the CHO cytotoxicity data of 74 DBPs as the endpoint to build linear quantitative structure-activity relationship (QSAR) models.
View Article and Find Full Text PDFAntibiotics and pesticides may exist as a mixture in real environment. The combined effect of mixture can either be additive or non-additive (synergism and antagonism). However, no effective predictive approach exists on predicting the synergistic and antagonistic toxicities of mixtures.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2019
Six common heavy metals (Ni, Fe, Zn, Pb, Cd, and Cr) in the water environment were selected to present five groups of binary mixture systems (Ni-Fe, Ni-Zn, Ni-Pb, Ni-Cd, and Ni-Cr) through a direct equipartition ray design. Microplate toxicity analysis based on Chlorella pyrenoidosa measured the 96-h joint toxicities of the binary mixtures. Toxicity interaction of the binary mixture was analyzed by comparing the observed toxicity data with the reference model (concentration addition).
View Article and Find Full Text PDFTwo-stage prediction (TSP) model had been developed to predict toxicities of mixtures containing complex components, but its prediction power need to be further validated. Six phenolic compounds and six heavy metals were selected as mixture components. One mixture (M1) was built with equivalent-effect concentration ratio and four mixtures (M2-M5) were designed with fixed concentration ratio.
View Article and Find Full Text PDFThe purpose of this study is to compare microbial number, microbial biomass as well as soil enzyme activity between paddy field and dryland originated karst wetland ecosystems. The soil samples (0-20 cm) of uncultivated wetland, paddy field and dryland were collected in Huixian karst cave wetland, Guilin, China. Microbial numbers and biomass were detected using dilute plate incubation counting and chloroform fumigation-extraction, respectively.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2015
The nature of most environmental contaminants comes from chemical mixtures rather than from individual chemicals. Most of the existed mixture models are only valid for non-interactive mixture toxicity. Therefore, we built two simple linear regression-based concentration addition (LCA) and independent action (LIA) models that aim to predict the combined toxicities of the interactive mixture.
View Article and Find Full Text PDFThe individual toxicities of five organophosphorus pesticides (dichlorvos, parathion, methyl parathion, malathion and dimethoate) to Daphnia magna were investigated in 24-h immobilization experiments. Using these toxicity data, their combined toxicities were measured in pesticide mixtures designed using either 'equivalent-effect concentration ratios' or 'uniform-design concentration ratios'. The toxicities of mixtures of similarly or dissimilarly acting toxicants are often predicted from the individual toxicities of the component compounds, using one of two distinct biometric models: concentration addition (CA) or independent action (IA).
View Article and Find Full Text PDF