The advancement of mass spectrometry technologies has revolutionised plant metabolomics research by enabling the acquisition of raw metabolomics data. However, the identification, analysis, and visualisation of these data require specialised tools. Existing solutions lack a dedicated plant-specific metabolite database and pose usability challenges.
View Article and Find Full Text PDFCeramide synthases (CSs) produce ceramides from long-chain bases (LCBs). However, how CSs regulate immunity and cell death in remains unclear. Here, we decipher the roles of two classes of CS, CSI (LAG1 HOMOLOG 2, LOH2) and CSII (LOH1/3), in these processes.
View Article and Find Full Text PDFSphingolipids are structural components of the lipid bilayer that acts as signaling molecules in many cellular processes, including cell death. Ceramides, key intermediates in sphingolipid metabolism, are phosphorylated by the ceramide kinase ACCELERATED CELL DEATH5 (ACD5). The loss of ACD5 function leads to ceramide accumulation and spontaneous cell death.
View Article and Find Full Text PDFSphingolipids have key functions in plant membrane structure and signaling. Perturbations of plant sphingolipid metabolism often induce cell death and salicylic acid (SA) accumulation; SA accumulation, in turn, promotes sphingolipid metabolism and further cell death. However, the underlying molecular mechanisms remain unclear.
View Article and Find Full Text PDFFront Plant Sci
October 2020
Fumonisin toxins are produced by fungal pathogens. Fumonisins are structural analogs of sphingosine and potent inhibitors of ceramide synthases (CerSs); they disrupt sphingolipid metabolism and cause disease in plants and animals. Over the past three decades, researchers have used fumonisin B1 (FB1), the most common fumonisin, as a probe to investigate sphingolipid metabolism in yeast and animals.
View Article and Find Full Text PDFThe highly conserved catabolic process of autophagy delivers unwanted proteins or damaged organelles to vacuoles for degradation and recycling. This is essential for the regulation of cellular homeostasis, stress adaptation, and programmed cell death in eukaryotes. In particular, emerging evidence indicates that autophagy plays a multifunctional regulatory role in plant innate immunity during plant-pathogen interactions.
View Article and Find Full Text PDFSphingolipids, a class of bioactive lipids found in cell membranes, can modulate the biophysical properties of the membranes and play a critical role in signal transduction. Sphingolipids are involved in autophagy in humans and yeast, but their role in autophagy in plants is not well understood. In this study, we reported that the AtACER, an alkaline ceramidase that hydrolyses ceramide to long-chain base (LCB), functions in autophagy process in Arabidopsis.
View Article and Find Full Text PDFSerine palmitoyltransferase (SPT), a pyridoxyl-5'-phosphate-dependent enzyme, catalyzes the first and rate-limiting step in sphingolipid biosynthesis. In humans and yeast, orosomucoid proteins (ORMs) negatively regulate SPT and thus play an important role in maintaining sphingolipid levels. Despite the importance of sphingoid intermediates as bioactive molecules, the regulation of sphingolipid biosynthesis through SPT is not well understood in plants.
View Article and Find Full Text PDFPlant activators are chemicals that induce plant defense responses to a broad spectrum of pathogens. Here, we identified a new potential plant activator, 5-(cyclopropylmethyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol, named PPA (pyrimidin-type plant activator). Compared with benzothiadiazole S-methyl ester (BTH), a functional analog of salicylic acid (SA), PPA was fully soluble in water and increased fresh weight of rice (Oryza sativa) and Arabidopsis plants at low concentrations.
View Article and Find Full Text PDFHuan Jing Ke Xue
February 2013
In order to strengthen the activity of biofilm on the carrier surface, the tourmpaline on polyurethane (TPU) carrier was prepared using waterborne polyurethane as medium. The physical properties of TPU carrier were characterized by scanning electron microscope(SEM) and water absorbency, and its effect on biofilm biomass and nitrifying ability was studied. The results showed that the tourmaline loading amount of TPU carrier can be affected by waterborne polyurethane.
View Article and Find Full Text PDF