Publications by authors named "Hong-Wei Ouyang"

Article Synopsis
  • Immune rejection due to mismatched human leucocyte antigens (HLAs) poses a significant challenge for allogeneic cell therapies.
  • Current methods to create 'universal' immune-compatible cells can lead to problems like genomic instability or cell damage.
  • By targeting a specific super-enhancer linked to HLA-I expression in mesenchymal stromal cells, researchers were able to reduce HLA-I on the cell surface, enhancing their survival in a humanized mouse model and improving therapeutic outcomes in acute lung injury.
View Article and Find Full Text PDF

Although aging is an increasingly severe healthy, economic, and social global problem, it is far from well-modeling aging due to the aging process's complexity. To promote the aging modeling, here we did the quantitative measurement based on aging blood transcriptome. Specifically, the aging blood transcriptome landscape was constructed through ensemble modeling in a cohort of 505 people, and 1138 age-related genes were identified.

View Article and Find Full Text PDF

Current biomaterials and tissue engineering techniques have shown a promising efficacy on full-thickness articular cartilage defect repair in clinical practice. However, due to the difficulty of implanting biomaterials or tissue engineering constructs into a partial-thickness cartilage defect, it remains a challenge to provide a satisfactory cure in joint surface regeneration in the early and middle stages of osteoarthritis. In this study, we focused on a ready-to-use tissue-adhesive joint surface paint (JS-Paint) capable of promoting and enhancing articular surface cartilage regeneration.

View Article and Find Full Text PDF

Current surgical management of anterior cruciate ligament (ACL) rupture still remains an intractable challenge in ACL regeneration due to the weak self-healing capability of ACL. Inadequate cell numbers and vascularization within the articular cavity contribute mainly to the poor prognosis. This time, we fabricated a new tissue engineering scaffold by adding ligament stem/progenitor cell (LSPC) sheets to our previous knitted silk-collagen sponge scaffold, which overcame these limitations by providing sufficient numbers of seed cells and a natural extracellular matrix to facilitate regeneration.

View Article and Find Full Text PDF

Characterized by their slow adhering property, skeletal muscle myogenic progenitor cells (MPCs) have been widely utilized in skeletal muscle tissue engineering for muscle regeneration, but with limited efficacy. Skeletal muscle regeneration is regulated by various cell types, including a large number of rapidly adhering cells (RACs) where their functions and mechanisms are still unclear. In this study, we explored the function of RACs by co-culturing them with MPCs in a biomimetic skeletal muscle organoid system.

View Article and Find Full Text PDF

Nanoparticles are widely developed and utilized in the pharmaceutical and medicine industry, as they can be easily distributed and infiltrated throughout the whole body once administered; however, the body wide effect of nanoparticles infiltration is still unclear. In this study, we developed a new strategy of Nano Genome Altas (NGA) of multi-tissues to study the acute Body-wide-Organ-Transcriptomic response to nanomaterials. Hydroxyapatite(HA)-Nanoparticles (HANPs) was applied in this study as an example both in vitro and in vivo.

View Article and Find Full Text PDF

Joint pain is the defining symptom of osteoarthritis (OA) but its origin and mechanisms remain unclear. Here, we investigated an unprecedented role of osteoclast-initiated subchondral bone remodeling in sensory innervation for OA pain. We show that osteoclasts secrete netrin-1 to induce sensory nerve axonal growth in subchondral bone.

View Article and Find Full Text PDF

Great effort has been spent to promote the vascularization of tissue engineering bone grafts (TEBG) for improved therapeutic outcome. However, the thorough vascularization especially in the central region still remained as a major challenge for the clinical translation of TEBG. Here, we developed a new strategy to construct a centrally vascularized TEBG (CV-TEBG) with unique core-shell composite structure, which is consisted of an angiogenic core and an osteogenic shell.

View Article and Find Full Text PDF

Introduction: Mesenchymal Stem Cells (MSCs) are promising candidates for nerve tissue engineering. Brain Derived Neurotrophic Factor (BDNF) secreted by MSCs can function to increase neural differentiation and relieve inflammation response. Gene transfection technology is an efficient strategy to increase the secretion levels of cytokines and enhance cellular functions.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells.

View Article and Find Full Text PDF

Tendon disorders, which are commonly presented in the clinical setting, disrupt the patients' normal work and life routines, and they damage the careers of athletes. However, there is still no effective treatment for tendon disorders. In the field of tissue engineering, the potential of the therapeutic application of exogenous stem cells to treat tendon pathology has been demonstrated to be promising.

View Article and Find Full Text PDF

Unlabelled: Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA).

View Article and Find Full Text PDF

Unlabelled: The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage.

View Article and Find Full Text PDF

The repair of injured tendons remains a formidable clinical challenge because of our limited understanding of tendon stem cells and the regulation of tenogenesis. With single-cell analysis to characterize the gene expression profiles of individual cells isolated from tendon tissue, a subpopulation of nestin tendon stem/progenitor cells (TSPCs) was identified within the tendon cell population. Using Gene Expression Omnibus datasets and immunofluorescence assays, we found that nestin expression was activated at specific stages of tendon development.

View Article and Find Full Text PDF

Unlabelled: Rotator cuff tear is one of the most common types of shoulder injuries, often resulting in pain and physical debilitation. Allogeneic tendon-derived decellularized matrices do not have appropriate pore size and porosity to facilitate cell infiltration, while commercially-available synthetic scaffolds are often inadequate at inducing tenogenic differentiation. The aim of this study is to develop an advanced 3D aligned collagen/silk scaffold (ACS) and investigate its efficacy in a rabbit massive rotator cuff tear model.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is one of the most devastating injuries. Treatment strategies for SCI are required to overcome comprehensive issues. Implantation of biomaterial scaffolds and stem cells has been demonstrated to be a promising strategy.

View Article and Find Full Text PDF
Article Synopsis
  • Articular cartilage does not self-renew, and injuries can lead to degenerative diseases like osteoarthritis; current treatments using autologous chondrocytes face challenges in expanding cells in the lab.
  • * Recent interest has emerged in cartilage stem/progenitor cells (CSPCs), specifically chondrocyte-derived progenitor cells (CDPCs), which show stem cell-like properties and have potential for cartilage repair.
  • * A special culture method (2DLL) enhances the emergence and growth of CDPCs, making them effective in forming cartilage and repairing significant knee defects in clinical applications.*
View Article and Find Full Text PDF

Defined as stable cell-cycle arrest, cellular senescence plays an important role in diverse biological processes including tumorigenesis, organismal aging, and embryonic development. Although increasing evidence has documented the metabolic changes in senescent cells, mitochondrial function and its potential contribution to the fate of senescent cells remain largely unknown. Here, using two in vitro models of cellular senescence induced by doxorubicin treatment and prolonged passaging of neonatal human foreskin fibroblasts, we report that senescent cells exhibited high ROS level and augmented glucose metabolic rate concomitant with both morphological and quantitative changes of mitochondria.

View Article and Find Full Text PDF
Article Synopsis
  • Human embryonic stem cells (hESCs) are considered a premier source for generating various body cells and tissues, recognized by global health authorities for their regenerative capabilities.
  • The study involved differentiating hESCs into various types of human cells, and assessing the safety of different substances on these cells.
  • Results indicated that hESC-derived cellular platforms were more sensitive and accurate for testing human health and safety compared to currently used cell models.
View Article and Find Full Text PDF

Calcification of soft tissues, such as heart valves and tendons, is a common clinical problem with limited therapeutics. Tissue specific stem/progenitor cells proliferate to repopulate injured tissues. But some of them become divergent to the direction of ossification in the local pathological microenvironment, thereby representing a cellular target for pharmacological approach.

View Article and Find Full Text PDF

Introduction: Interleukin-1β (IL-1β) and nerve growth factor (NGF) are key regulators in the pathogenesis of inflammatory arthritis; specifically, IL-1β is involved in tissue degeneration and NGF is involved in joint pain. However, the cellular and molecular interactions between IL-1β and NGF in articular cartilage are not known. Cartilage stem/progenitor cells (CSPCs) have recently been identified in osteoarthritic (OA) cartilage on the basis of their migratory properties.

View Article and Find Full Text PDF

High expression levels of pro-inflammatory tumor necrosis factor (TNF)-α within bone defects can decelerate and impair bone regeneration. However, there are few available bone scaffolds with anti-inflammatory function. The progranulin (PGRN)-derived engineered protein, Atsttrin, is known to exert antagonistic effects on the TNF-α function.

View Article and Find Full Text PDF

Objective: Chondrocyte hypertrophy and mineralization are considered to be important pathologic factors in osteoarthritis (OA). We previously reported that Rac1 was aberrantly activated to promote chondrocyte hypertrophy, mineralization, and expression of matrix metalloproteinase 13 and ADAMTS in OA. However, the underlying mechanism of aberrant Rac1 activation in OA is unclear.

View Article and Find Full Text PDF