Publications by authors named "Hong-Sun Kim"

Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-β to the activin A pathway. We found that TGF-β upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D.

View Article and Find Full Text PDF

Unlabelled: Lysine (K)-specific demethylase 6A (KDM6A) is a frequently mutated tumor suppressor gene in pancreatic ductal adenocarcinoma (PDAC). However, the impact of KDM6A loss on the PDAC tumor immune microenvironment is not known. This study used a genetically engineered, pancreas-specific Kdm6a knockout (KO) PDAC mouse model and human PDAC tissue samples to demonstrate that KDM6A loss correlates with increased tumor-associated neutrophils and neutrophil extracellular traps (NET) formation, which are known to contribute to PDAC progression.

View Article and Find Full Text PDF

Background & Aims: Inactivating mutations of KDM6A, a histone demethylase, were frequently found in pancreatic ductal adenocarcinoma (PDAC). We investigated the role of KDM6A (lysine demethylase 6A) in PDAC development.

Methods: We performed a pancreatic tissue microarray analysis of KDM6A protein levels.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a poor prognosis and low survival rates. PDAC is characterized by a fibroinflammatory tumor microenvironment enriched by abundant fibroblasts and a variety of immune cells, contributing to its aggressiveness. Neutrophils are essential infiltrating immune cells in the PDAC microenvironment.

View Article and Find Full Text PDF

Extracellular traps (ETs), such as neutrophil extracellular traps, are a physical mesh deployed by immune cells to entrap and constrain pathogens. ETs are immunogenic structures composed of DNA, histones, and an array of variable protein and peptide components. While much attention has been paid to the multifaceted function of these structures, mechanistic studies of ETs remain challenging due to their heterogeneity and complexity.

View Article and Find Full Text PDF

Overexpression of EZH2 in estrogen receptor negative (ER-) breast cancer promotes metastasis. EZH2 has been mainly studied as the catalytic component of the Polycomb Repressive Complex 2 (PRC2) that mediates gene repression by trimethylating histone H3 at lysine 27 (H3K27me3). However, how EZH2 drives metastasis despite the low H3K27me3 levels observed in ER- breast cancer is unknown.

View Article and Find Full Text PDF

Recent evidence suggests that the metastatic spread of head and neck squamous cell carcinomas (HNSCC) requires the function of cancer stem cells endowed with multipotency, self-renewal, and high tumorigenic potential. We demonstrated that cancer stem cells reside in perivascular niches and are characterized by high aldehyde dehydrogenase (ALDH) activity and high CD44 expression (ALDHCD44) in HNSCC. Here, we hypothesize that endothelial cell-secreted interleukin-6 (IL-6) contributes to tumor progression by enhancing the migratory phenotype and survival of cancer stem cells.

View Article and Find Full Text PDF

A small sub-population of cells characterized by increased tumorigenic potential, ability to self-renew and to differentiate into cells that make up the tumor bulk, has been characterized in some (but not all) tumor types. These unique cells, namedcancer stem cells, are considered drivers of tumor progression in these tumors. The purpose of this work is to understand if cancer stem cells play a functional role in the tumorigenesis of salivary gland mucoepidermoid carcinomas.

View Article and Find Full Text PDF

Cancer-stromal cell interactions are a critical process in tumorigenesis. Conventional dish-based assays, which simply mix two cell types, have limitations in three aspects: 1) limited control of the cell microenvironment; 2) inability to study cell behavior in a single-cell manner; and 3) have difficulties in characterizing single cell behavior within a highly heterogeneous cell population (e.g.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a late-onset, progressive neurodegenerative disease linked to a polyglutamine (polyQ) expansion in the androgen receptor (AR). Men affected by SBMA show marked muscle weakness and atrophy, typically emerging midlife. Given the androgen-dependent nature of this disease, one might expect AR antagonists to have therapeutic value for treating SBMA.

View Article and Find Full Text PDF

The emergence of colistin or tigecycline resistance as well as imipenem resistance in Acinetobacter baumannii poses a great therapeutic challenge. The bactericidal and synergistic effects of several combinations of antimicrobial agents against imipenem-, colistin- or tigecycline-resistant A. baumannii isolates were investigated by in vitro time-kill experiments.

View Article and Find Full Text PDF

Thirteen human colorectal cancer (CRC) cell lines were established from 10 primary tumors and 3 metastatic tumors obtained from 13 Korean patients. Characteristics of the cell lines including morphology in vivo and in vitro; mutations of the K-ras, p53, APC and MMR genes and microsatellite instability (MSI) status in vitro were determined. Expression of drug-sensitivity genes including MDR1, MXR, MRP1 and COX2 was also analyzed.

View Article and Find Full Text PDF

Background: This study was designed to assess the effects of pneumoperitoneum and positional changes on the autonomic nervous system (ANS) in laparoscopy-assisted vaginal hysterectomy (LAVH) patients.

Methods: Systolic blood pressures and R-R interval were recorded for 5 minutes in 22 patients, and then power spectral analyses were conducted to evaluate the ANS. The following variables were measured at various positions: preinduction (BASE), prepneumoperitoneum (PREPP), pneumoperitoneum at head-down (PP), normoperitoneum at supine (POSTPP).

View Article and Find Full Text PDF

The purpose of this paper is twofold: to describe the water quality model of Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D) and to present an application of HEM-3D to a coastal system in Korea. HEM-3D, listed as a tool for the development of Total Maximum Daily Load by US Environmental Protection Agency, is a general-purpose modeling package for simulation of the flow field, transport, and eutrophication processes throughout the water column and of diagenetic processes in the benthic sediment. This paper describes the water quality model of HEM-3D with emphasis on its unique features.

View Article and Find Full Text PDF