Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory M1-phenotype and neuroprotective anti-inflammatory M-phenotype. Currently, there is no effective treatment for modulating such alterations. M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR.
View Article and Find Full Text PDFMicroglial cells are a macrophage-like cell type residing within the CNS. These cells evoke pro-inflammatory responses following thrombin-induced brain damage. Inflammasomes, which are large caspase-1-activating protein complexes, play a critical role in mediating the extracellular release of HMGB1 in activated immune cells.
View Article and Find Full Text PDFBackground: Peripheral nerve injuries result in muscle denervation and apoptosis of the involved muscle, which subsequently reduces mitochondrial content and causes muscle atrophy. The local injection of mitochondria has been suggested as a useful tool for restoring the function of injured nerves or the brain.
Objective: To determine outcomes following the administration of isolated mitochondria into denervated muscle after nerve injury that have not been investigated.