Tungsten oxide (WO) is known for its photochromic properties, making it useful for smart windows, displays, and sensors. However, its small bandgap leads to rapid recombination of electron-hole pairs, resulting in poor photochromic performance. This study aims to enhance the photochromic properties of WO by synthesizing hexagonal tungsten oxide via hydrothermal synthesis, which increases surface area and internal hydrates.
View Article and Find Full Text PDFMetal-free carbon-based electrocatalysts for dye-sensitized solar cells (DSSCs) are sufficiently active in Co(II)/Co(III) electrolytes but are not satisfactory in the most commonly used iodide/triiodide (I(-)/I3 (-)) electrolytes. Thus, developing active and stable metal-free electrocatalysts in both electrolytes is one of the most important issues in DSSC research. We report the synthesis of edge-selenated graphene nanoplatelets (SeGnPs) prepared by a simple mechanochemical reaction between graphite and selenium (Se) powders, and their application to the counter electrode (CE) for DSSCs in both I(-)/I3 (-) and Co(II)/Co(III) electrolytes.
View Article and Find Full Text PDFThree novel carbazole-based molecules have been synthesized and successfully applied as hole-transporting materials (HTMs) of CH3NH3PbI3-based perovskite solar cells. In particular, the perovskite cell with SGT-405, having a three-arm-type structure, exhibited a remarkable photovoltaic conversion efficiency (PCE) of 14.79%.
View Article and Find Full Text PDF