Publications by authors named "Hong-Liang Qiu"

Article Synopsis
  • Cardiac remodelling is a key factor in cardiovascular diseases, and this study investigates the role of TRAF7, a protein linked to heart defects, in promoting pathological cardiac hypertrophy.
  • Researchers utilized mouse models and various experimental techniques to examine how TRAF7 affects heart cell growth and dysfunction, revealing that higher levels of TRAF7 worsen heart enlargement, while reducing TRAF7 has a protective effect.
  • The study found that TRAF7 influences heart hypertrophy by interacting with another protein, ASK1, which leads to its activation and contributes to the disease process, suggesting that TRAF7 could be a potential target for new treatments.
View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM.

View Article and Find Full Text PDF

Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects.

View Article and Find Full Text PDF

ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr.

View Article and Find Full Text PDF

Background: Chronic pressure overload triggers pathological cardiac hypertrophy that eventually leads to heart failure. Effective biomarkers and therapeutic targets for heart failure remain to be defined. The aim of this study is to identify key genes associated with pathological cardiac hypertrophy by combining bioinformatics analyses with molecular biology experiments.

View Article and Find Full Text PDF

Background And Purpose: Limonin, a naturally occurring tetracyclic triterpenoid, has extensive pharmacological effects. Its role in cardiac hypertrophy remains to be elucidated. We investigated its effects on cardiac hypertrophy along with the potential mechanisms involved.

View Article and Find Full Text PDF

Background: Dilated cardiomyopathy (DCM) is characterized by enlarged ventricular dimensions and systolic dysfunction and poor prognosis. Myocardial lipid metabolism appears abnormal in DCM. However, the mechanism of lipid metabolism disorders in DCM remains unclear.

View Article and Find Full Text PDF

An important pathophysiological consequence of pressure overload-induced cardiac hypertrophy is adverse cardiac remodeling, including structural changes in cardiomyocytes and extracellular matrix. Diosmetin (DIO), a monomethoxyflavone isolated from citrus fruits, had antioxidative stress effects in multiple organs. The purpose of this study was to examine the biological effect of diosmetin on pathological cardiac hypertrophy.

View Article and Find Full Text PDF

Inflammation and apoptosis are main pathological processes that lead to the development of cardiac hypertrophy. Lupeol, a natural triterpenoid, has shown anti-inflammatory and anti-apoptotic activities as well as potential protective effects on cardiovascular diseases. In this study we investigated whether lupeol attenuated cardiac hypertrophy and fibrosis induced by pressure overload in vivo and in vitro, and explored the underlying mechanisms.

View Article and Find Full Text PDF