This study aims to critically assess different micromechanical analysis models applied to carbon-fiber-reinforced plastic (CFRP) composites, employing micromechanics-based homogenization to accurately predict their effective properties. The paper begins with the simplest Voigt and Reuss models and progresses to more sophisticated micromechanics-based models, including the Mori-Tanaka and Method of Cells (MOC) models. It provides a critical review of the areas in which these micromechanics-based models are effective and analyses of their limitations.
View Article and Find Full Text PDFThe purpose of this study is to prepare a resistive lossy material using conducting polymers for electromagnetic wave absorbers. This paper presents a conductive paste largely composed of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) with a polyurethane binder. The various secondary compounds are added in small amounts to an aqueous blended solution in order to enhance the electrical and mechanical properties of the conductive thin film.
View Article and Find Full Text PDFThis study describes the numerical simulation results of aluminum/carbon-fiber-reinforced plastic (CFRP) hybrid joint parts using the explicit finite-element solver LS-DYNA, with a focus on capturing the failure behavior of composite laminates as well as the adhesive capacity of the aluminum-composite interface. In this study, two types of adhesive modeling techniques were investigated: a tiebreak contact condition and a cohesive zone model. Adhesive modeling techniques have been adopted as a widely commercialized model of structural adhesives to simulate adhesive failure based on fracture mechanics.
View Article and Find Full Text PDFGraphene oxide (GO) has recently become an attractive building block for fabricating graphene-based functional materials. GO films and fibers have been prepared mainly by vacuum filtration and wet spinning. These materials exhibit relatively high Young's moduli but low toughness and a high tendency to tear or break.
View Article and Find Full Text PDF