Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally since December 2019. Several studies reported that SARS-CoV-2 infections may produce false-positive reactions in dengue virus (DENV) serology tests and vice versa. However, it remains unclear whether SARS-CoV-2 and DENV cross-reactive antibodies provide cross-protection against each disease or promote disease severity.
View Article and Find Full Text PDFDengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis.
View Article and Find Full Text PDFThere is an urgent need for a safe and effective vaccine against dengue virus (DENV) which infects about 390 million humans per year. In the present study we combined modifications of two DENV proteins, the nonstructural protein 1 (NS1) and the envelope (E) protein, to produce a DENV vaccine candidate with enhanced features. One of these modified proteins was a C-terminal-deleted fragment of NS1 called ΔC NS1 which we have shown previously to be protective without the potentially harmful effects of cross-reactive epitopes common to surface antigens on platelets and endothelial cells.
View Article and Find Full Text PDFDengue virus (DENV) causes a range of illness, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV nonstructural protein (NS) 1 has been considered to be a desirable vaccine candidate for its ability to induce Ab and complement-dependent cytolysis of DENV-infected cells as well as to block the pathogenic effects of NS1. However a potential drawback of NS1 as a vaccine is that anti-DENV NS1 Abs can lead to endothelial cell damage and platelet dysfunction by antigenic cross-reactivity.
View Article and Find Full Text PDF