Recurrence and extraocular metastasis in advanced intraocular retinoblastoma (RB) are still major obstacles for successful treatment of Chinese children. Tuberous sclerosis complex (TSC) is a very rare, multisystemic genetic disorder characterized by hamartomatous growth. In this study, we aimed to compare genomic and epigenomic profiles with human RB or TSC using recently developed nanopore sequencing, and to identify disease-associated variations or genes.
View Article and Find Full Text PDFIntroduction: Hepatocellular cancer stem cells (CSCs) play crucial roles in hepatocellular cancer initiation, development, relapse, and metastasis. Therefore, eradication of this cell population is a primary objective in hepatocellular cancer therapy. We prepared a nanodrug delivery system with activated carbon nanoparticles (ACNP) as carriers and metformin (MET) as drug (ACNP-MET), which was able to selectively eliminate hepatocellular CSCs and thereby increase the effects of MET on hepatocellular cancers.
View Article and Find Full Text PDFWorld J Clin Cases
January 2021
With the development of endoscopic therapy, argon plasma coagulation (APC) has been widely used by endoscopists. It has many advantages, such as simple to operate, low cost, and minimal invasiveness. Because of its capability of lesion ablation and hemostasis, APC has several indications in the gastrointestinal tract.
View Article and Find Full Text PDFBackground: Retinoblastoma (RB) is the most frequent pediatric retinal tumor. In the present study, to elucidate chemoresistance mechanisms and identify potential biomarkers in RB, we utilized RNA sequencing (RNAseq) technological platforms to reveal transcriptome profiles and identify any differentially expressed genes (DEGs) between an etoposide drug-resistant subline (Y79/EDR) and parental Y79 cells.
Methods: To test whether Y79/EDR cells showed resistance to antineoplastic agents for RB, we treated the cells with etoposide, carboplatin and vincristine and analyzed them with a Cell Counting Kit-8 (CCK-8).
Gastric cancer stem cells (CSCs) play a crucial role in the initiation, development, relapse and metastasis of gastric cancer because they are resistant to a standard chemotherapy and the residual CSCs are able to proliferate indefinitely. Therefore, eradication of this cell population is a primary objective in gastric cancer therapy. Here, we report a gastric CSCs-specifically targeting drug delivery system (SAL-SWNT-CHI-HA complexes) based on chitosan(CHI) coated single wall carbon nanotubes (SWNTs) loaded with salinomycin (SAL) functionalized with hyaluronic acid (HA) can selectively eliminate gastric CSCs.
View Article and Find Full Text PDFBackground: Multidrug resistance (MDR) of cancers can be circumvented by inducing programmed cell death, which is known as apoptosis. Mitochondria play a crucial role in apoptosis. Mitochondria-specific therapy would provide an efficient strategy for treating resistant cancers.
View Article and Find Full Text PDFBreast cancer stem cells play a crucial role in the relapse of breast cancers because they are resistant to a standard chemotherapy and the residual cancer stem cells are able to proliferate indefinitely. The objectives of present study were to construct a kind of mitochondrial targeting daunorubicin plus quinacrine liposomes for treating and for preventing the recurrence of breast cancer arising from the cancer stem cells. MCF-7 cancer stem cells were identified as CD44(+)/CD24(-) cells and cultured in free-serum medium.
View Article and Find Full Text PDFIntrinsic multidrug resistance (MDR) of cancers remains a major obstacle to successful chemotherapy. A dequalinium polyethylene glycol-distearoylphosphatidylethanolamine (DQA-PEG(2000)-DSPE) conjugate was synthesized as a mitochondriotropic molecule, and mitochondrial targeting resveratrol liposomes were developed by modifying DQA-PEG(2000)-DSPE on the surface of liposomes for overcoming the resistance. Evaluations were performed on the human lung adenocarcinoma A549 cells and resistant A549/cDDP cells, A549 and A549/cDDP tumor spheroids as well as the xenografted resistant A549/cDDP cancers in nude mice.
View Article and Find Full Text PDFPaclitaxel has shown potent efficacy against a wide spectrum of cancers in clinical treatment. However, chemotherapy with paclitaxel has been limited due to serious allergic reactions in patients caused by cremophor EL, and multidrug resistance in many types of tumors, and the restricted permeability across the intestinal barrier. Functional paclitaxel nanomicelles were developed to overcome these obstacles.
View Article and Find Full Text PDFBackground: To circumvent the problem of transporting anticancer drugs across the blood-brain barrier (BBB) to target brain tumors, we have previously developed dual-targeting daunorubicin liposomes modified with 4-aminophenyl-α-D-manno-pyranoside and transferrin molecules. The objective of the present study was to evaluate the pharmacokinetics and distribution of daunorubicin after intravenous administration of dual-targeting daunorubicin liposomes.
Methods: We evaluated pharmacological parameters in normal KunMing mice.
Intrinsic resistance of cancers is a major cause of failure in chemotherapy. We proposed here a strategy to overcome intrinsic resistance by constructing cancer cell mitochondria-specifically targeting drug-loaded liposomes, namely, mitosomal daunorubicin plus amlodipine. Anticancer agent daunorubicin and apoptotic inducer amlodipine were loaded together into the mitosomes, and targeting molecule dequalinium was modified on the surface.
View Article and Find Full Text PDFThe relapse of cancer is mostly due to the proliferation of cancer stem cells which could not be eliminated by a standard chemotherapy. A new kind of all-trans retinoic acid stealth liposomes was developed for preventing the relapse of breast cancer and for treating the cancer in combination with a cytotoxic agent, vinorelbine stealth liposomes. In vitro studies were performed on the human breast cancer MCF-7 and MDA-MB-231 cells.
View Article and Find Full Text PDFPurpose: The cancer stem cells play an important role in the invasion, metastasis and relapse of cancers as they are resistant to regular chemotherapy. In the present study, stealth liposomal daunorubicin plus tamoxifen was developed for eradicating breast cancer cells together with cancer stem cells.
Methods: Inhibitory effects were performed on the bulk human breast cancer cells (MCF-7), the sorted MCF-7 cancer stem-like cells (side population, SP), and the sorted MCF-7 cancer cells (NSP), respectively.
Purpose: The restriction of drug transporting across the blood-brain barrier (BBB) and the limit of drug penetrating into the tumor tissue remain the major obstacles for brain tumor chemotherapy. In the present study, we developed a functionalized liposomal nanoconstruct, epirubicin liposomes modified with tamoxifen (TAM) and transferrin (TF), for transporting drug across the BBB and afterwards targeting the brain glioma.
Methods: Evaluations were performed on the murine C6 glioma cells, the C6 glioma spheroids, the BBB model in vitro and the brain glioma-bearing rats.