Publications by authors named "Hong-Juan Han"

Pervasive environmental contamination due to the uncontrolled dispersal of 2,4-dinitrotoluene (2,4-DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy-intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4-DNT degradation module is designed, assembled, and validated in rice plants.

View Article and Find Full Text PDF

2,4-Dinitrotoluene (2,4-DNT) as a common industrial waste has been massively discharged into the environment with industrial wastewater. Due to its refractory degradation, high toxicity, and bioaccumulation, 2,4-DNT pollution has become increasingly serious. Compared with the currently available physical and chemical methods, in situ bioremediation is considered as an economical and environmentally friendly approach to remove toxic compounds from contaminated environment.

View Article and Find Full Text PDF
Article Synopsis
  • The long-used organic herbicide 2,4-D has led to significant environmental pollution and ecological issues, prompting the need for effective remediation methods.
  • Researchers engineered a strain of Escherichia coli with a complete degradation pathway for 2,4-D, allowing it to effectively break down the herbicide within hours and use it as its sole carbon source.
  • Genetic analyses and imaging techniques confirmed that the engineered bacteria not only degraded 2,4-D efficiently but also showed reduced damage compared to non-engineered strains, proving synthetic biology as a promising approach for environmental bioremediation.
View Article and Find Full Text PDF

Currently, feed enzymes are primarily obtained through fermentation of fungi, bacteria, and other microorganisms. Although the manufacturing technology for feed enzymes has evolved rapidly, the activities of these enzymes decline during the granulating process and the cost of application has increased over time. An alternative approach is the use of genetically modified plants containing complex feed enzymes for direct utilization in animal feedstuff.

View Article and Find Full Text PDF

Nitrobenzene is widely present in industrial wastewater and soil. Biodegradation has become an ideal method to remediate organic pollutants due to its low cost, high efficiency, and absence of secondary pollution. In the present study, 10 exogenous genes that can completely degrade nitrobenzene were introduced into Escherichia coli, and their successful expression in the strain was verified by fluorescence quantitative polymerase chain reaction and proteomic analysis.

View Article and Find Full Text PDF

Background: Production of vitamin C has been traditionally based on the Reichstein process and the two-step process. However, the two processes share a common disadvantage: vitamin C cannot be directly synthesized from D-glucose. Therefore, significant effort has been made to develop a one-step vitamin C fermentation process.

View Article and Find Full Text PDF

Industrial thiocyanate (SCN) waste streams from gold mining and coal coking have caused serious environmental pollution worldwide. Phytoremediation is an efficient technology in treating hazardous wastes from the environment. However, the phytoremediation efficiency of thiocyanate is very low due to the fact that plants lack thiocyanate degradation enzymes.

View Article and Find Full Text PDF

Individuals with mild cognitive impairment (MCI) are clinically heterogeneous, with different risks of progression to Alzheimer's disease. Regular follow-up and examination may be time-consuming and costly, especially for MRI and PET. Therefore, it is necessary to identify a more precise MRI population.

View Article and Find Full Text PDF

2,4,6-trinitrotoluene (TNT) and cobalt (Co) contaminants have posed a severe environmental problem in many countries. Phytoremediation is an environmentally friendly technology for the remediation of these contaminants. However, the toxicity of TNT and cobalt limit the efficacy of phytoremediation application.

View Article and Find Full Text PDF

Objective: To evaluate the use of direct to consumer Prefabricated adjustable thermoplastic mandibular advancement devices (PAT-MADs) (MyTAP™, Airway Management Inc), its effectiveness in the treatment of OSA, feasibility and short-term adherence.

Methods: In sum, 50 patients with diagnosed mild-moderate OSA on formal polysomnography (PSG) were fitted with a PAT-MAD (MyTAP™, Airway Management Inc). Sleep indices included the apnea-hypopnea index (AHI), hypopnea index (HI), apnea index (AI); oxygen desaturation index (ODI), and the lowest 0 saturation (Lsat) were measured with a Level 3 home sleep apnea test (HSAT) pre versus post treatment.

View Article and Find Full Text PDF

Betanin has been widely used as an additive for many centuries, and its use has increased because of its market application as an additive, high free radical scavenging activity, and safety, health-promoting properties. The main source of betanin is red beet, but many factors notably affect the yield of betanin from red beets. Betanin is not produced in cereal grains.

View Article and Find Full Text PDF

Introduction: This study aimed to investigate differences in the complication rate and postoperative pain score between single and multilevel surgery performed on patients with obstructive sleep apnoea.

Materials And Methods: A retrospective analysis was performed on patients with obstructive sleep apnoea who underwent surgery in a tertiary referral centre over 3 years. Patients who underwent single-level nasal, palatal or tongue surgery were compared with patients who underwent concurrent multilevel surgery of 2 or 3 levels.

View Article and Find Full Text PDF

Trichlorophenol (TCP) is a widely used and persistent environmentally toxic compound that poses a carcinogenic risk to humans. Phytoremediation is a proficient cleanup technology for organic pollutants. In this study, we found that the disulfide isomerase-like protein AtPDIL1-2 in plants is a good candidate for enhancing 2,4,6-TCP phytoremediation.

View Article and Find Full Text PDF

Objective: To review the existing literature on the role of transoral robotic surgery (TORS) for tongue base reduction in the management of adult obstructive sleep apnea-hypopnea syndrome (OSAHS).

Methods: We searched PubMed, MEDLINE, and Scopus databases from the first literature report of this surgical technique to July 30, 2015 for studies investigating the use of TORS for tongue base reduction in treating adult OSAHS. Our primary outcome measures were Apnea- Hypopnea Index (AHI), lowest oxygen saturation (LSAT), Epworth Sleepiness Score (ESS), and the rates of surgical cure (AHI<5) and success (50% reduction in AHI accompanied by a postoperative AHI<20).

View Article and Find Full Text PDF

The ADI1 Arabidopsis plants enhanced tolerance and degradation efficiency to naphthalene and had great potential for phytoremediation of naphthalene in the plant material before composting or harvesting and removal. Naphthalene is a global environmental concern, because this substance is assumed to contribute considerably to human cancer risk. Cleaning up naphthalene contamination in the environment is crucial.

View Article and Find Full Text PDF

Genes from microbes for degrading polycyclic aromatic hydrocarbons (PAHs) are seldom used to improve the ability of plants to remediate the pollution because the initiation of the microbial degradation of PAHs is catalyzed by a multienzyme system. In this study, for the first time, we have successfully transferred the complex naphthalene dioxygenase system of Pseudomonas into Arabidopsis and rice, the model dicot and monocot plant. As in bacteria, all four genes of the naphthalene dioxygenase system can be simultaneously expressed and assembled to an active enzyme in transgenic plants.

View Article and Find Full Text PDF

Methyl viologen (MV) is the main ingredient of Paraquat. It is little known about how plants respond to this compound. To understand the mode of MV action and molecular mechanism of plant response, we performed experiments of microarray on Arabidopsis.

View Article and Find Full Text PDF

To expand our knowledge about the relationship of nitrogen use efficiency and glutamine synthetase (GS) activity in the mangrove plant, a cytosolic GS gene from Avicennia marina has been heterologously expressed in and purified from Escherichia coli. Synthesis of the mangrove GS enzyme in E. coli was demonstrated by functional genetic complementation of a GS deficient mutant.

View Article and Find Full Text PDF

Environmental levels of bisphenol A (BPA) are a global concern because the compound can cause damage to reproductive organs, the thyroid gland, and brain tissues at developmental stages. Plants are important in removing BPA from the atmosphere, soil, and water. However, knowledge on the mechanism by which plants respond to this compound is limited.

View Article and Find Full Text PDF

Importance: This study investigates the effectiveness of combined palatal surgery and transoral robotic surgical (TORS) tongue base reduction with partial epiglottidectomy in the treatment of obstructive sleep apnea (OSA) in an Asian context. To our knowledge, this is the first report on TORS for OSA in Asian patients in the literature.

Objective: To report our preliminary experience with combined TORS tongue base reduction and partial epiglottidectomy with palatal surgery as a multilevel surgical treatment strategy for moderate to severe OSA in Asian patients for whom positive airway pressure treatment had failed.

View Article and Find Full Text PDF

Importance: Hyoid expansion with suspension can potentially increase the upper airway at the hypopharyngeal level, benefitting patients with sleep-related breathing disorder.

Objectives: To document the effect of hyoid expansion using titanium plate and screw on retrolingual hypopharyngeal airway dimension and to compare the airway dimension after isolated hyoid expansion with hyoid expansion + hyomandibular suspension.

Design: Anatomical cadaveric dissection study.

View Article and Find Full Text PDF

A new 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Malus domestica (MdEPSPS) was cloned and characterized by rapid amplification of cDNA ends to identify an EPSPS gene appropriate for the development of transgenic glyphosate-tolerant plants. However, wild-type MdEPSPS is not suitable for the development of transgenic glyphosate-tolerant plants because of its poor glyphosate resistance. Thus, we performed DNA shuffling on MdEPSPS, and one highly glyphosate-resistant mutant with mutations in eight amino acids (N63D, N86S, T101A, A187T, D230G, H317R, Y399R and C413A.

View Article and Find Full Text PDF