Publications by authors named "Hong-Ju Ahn"

In this study, we prepared Te nanorod arrays via a galvanic displacement reaction (GDR) on a Si wafer, and their composite with poly(3,4-ethylenedioxythiophene) (PEDOT) were successfully synthesized by electrochemical polymerization with lithium perchlorate (LiClO) as a counter ion. The thermoelectric performance of the composite film was optimized by adjusting the polymerization time. As a result, a maximum power factor (PF) of 235 µW/mK was obtained from a PEDOT/Te composite film electrochemically polymerized for 15 s at room temperature, which was 11.

View Article and Find Full Text PDF

In this study, a novel chloride ion (Cl) sensor based on Ag wire coated with an AgCl layer was fabricated using a gel-type internal electrolyte and a diatomite ceramic membrane, which played an important role in preventing electrolyte leakage from the ion-selective electrode. The sensing performance, including reversibility, response, recovery time, low detection limit, and the long-term stability, was systemically investigated in electrolytes with different Cl contents. The as-fabricated Cl sensor could detect Cl from 1 to 500 mM KCl solution with good linearity.

View Article and Find Full Text PDF

One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis.

View Article and Find Full Text PDF

Since it has been reported that Perilla leaves (Perilla frutescens) have antimutagenic, antioxidant, and anti-inflammatory properties, we hypothesized that Perilla leaves may have a potential anticancer activity. Therefore, we examined the possibility that cancer cell growth is reduced by treatment with a Perilla leaf ethanol extract (PLE) using human leukemia HL-60 cells and then investigated the mechanism of the growth inhibition. We found that PLE treatment suppressed cell viability in a dose-dependent manner.

View Article and Find Full Text PDF