A sensitive and accurate analytical method was developed and validated to detect bambermycin, a commonly used antibiotic in animal feed and livestock. The presence of bambermycin residues in food products can pose health risks to consumers, emphasizing the need for a sensitive and accurate analytical method. A reversed-phase analytical column was utilized with a mobile phase comprising 0.
View Article and Find Full Text PDFAmyloid fibrils have recently been highlighted for their diverse applications as functional nanomaterials in modern chemistry. However, tight control to obtain a targeted fibril length with low heterogeneity has not been achieved because of the complicated nature of amyloid fibrillation. Herein, we demonstrate that fibril assemblies can be homogeneously manipulated with desired lengths from ~40 nm to ~10 μm by a phase transfer of amyloid proteins based on host-guest chemistry.
View Article and Find Full Text PDFWith the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li, Na, K) in the gas phase.
View Article and Find Full Text PDFPaclitaxel (PTX) is a popular anticancer drug used in the treatment of various types of cancers. PTX is metabolized in the human liver by cytochrome P450 to two structural isomers, 3′-p-hydroxypaclitaxel (3p-OHP) and 6α-hydroxypaclitaxel (6α-OHP). Analyzing PTX and its two metabolites, 3p-OHP and 6α-OHP, is crucial for understanding general pharmacokinetics, drug activity, and drug resistance.
View Article and Find Full Text PDFBackground: Botulinum toxin type A (BoNT-A) is widely used to improve the lower facial contour.
Objective: To determine the difference in the changes in the lower facial contour achieved with 1 and 2 sessions of BoNT-A injections using 3-dimensional (3D) laser scanning.
Materials And Methods: Twenty volunteers were randomly divided into 2 groups.
A fluorescence switch that consists of DNA-templated silver nanoclusters (DNA-AgNCs) triggered by silver ion (Ag(+)) is developed to detect Ag(+). The mechanism of the fluorescence switching of DNA-AgNCs is investigated by fluorescence spectroscopy, circular dichroism spectroscopy, DNA hybridization assay and mass spectrometry. Ag(+) induces a dimeric structure of Cyt12-AgNCs by forming a bridge between two Cyt12-AgNCs, where Cyt12 is cytosine 12-mer; this dimer formation causes the fluorescence change of Cyt12-AgNCs from red to green.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2014
Amyloid fibrils are insoluble protein aggregates comprised of highly ordered β-sheet structures and they are involved in the pathology of amyloidoses, such as Alzheimer's disease. A supramolecular strategy is presented for inhibiting amyloid fibrillation by using cucurbit[7]uril (CB[7]). CB[7] prevents the fibrillation of insulin and β-amyloid by capturing phenylalanine (Phe) residues, which are crucial to the hydrophobic interactions formed during amyloid fibrillation.
View Article and Find Full Text PDFDNA-templated silver nanoclusters (DNA-AgNCs) have emerged as promising materials for sensing, bio-labelling, and bio-imaging due to their fluorogenic properties. Using the 12 mer DNA with a cytosine-rich sequence, AgCNs have been formed successfully. Herein, we develop two different types of DNA-AgNC systems for the detection of potassium ions (K) and nitric oxide (NO) by utilizing the structural change of DNA or DNA template transformation.
View Article and Find Full Text PDFAn investigation of the host-guest chemistry of cucurbit[n]uril (CB[n], n = 6 and 7) with α,ω-alkyldiammonium guests (H2N(CH2)xNH2, x = 4, 6, 8, 10, and 12) both in solution and in the gas phase elucidates their intrinsic host-guest properties and the contribution of solvent water. Isothermal titration calorimetry and nuclear magnetic resonance measurements indicate that all alkyldiammonium cations have inclusion interactions with CB[n] except for the CB[7]-tetramethylenediamine complex in aqueous solution. The electrospray ionization of mixtures of CB[n] and the alkyldiammonium guests reflects their solution phase binding constants.
View Article and Find Full Text PDF