Publications by authors named "Hong-Ge Jia"

Article Synopsis
  • Scientists created different versions of a disease in mice to study autoimmune myositis, which affects muscles.
  • They tested if giving mice a stronger vaccine made of rat muscle proteins and a toxin would lead to a more severe form of the disease.
  • The stronger vaccine caused more muscle problems and inflammation, but all the mice given the high dose survived, making this method a useful way to study this disease more easily.
View Article and Find Full Text PDF

Aim: To investigate TLR4, MyD88 and NF-κB mRNA levels in mouse lymph node with experimental autoimmune myositis(EAM)and determine the role of TLR4 in autoimmune myositis.

Methods: Thirty femal BALB/c mice were randomly divided into five groups (n=6 animals per group): group 1 was the control, while animals in other four groups were killed at different time point: group 2 in the first week, group 3 in the second week, group 4 in the third week and group 5 in the fourth week since they had been given myosin for preparing EAM. The expressions of TLR4, MyD88 and NF-κB mRNA were measured with real-time fluorescent quantitative polymerase chain reaction.

View Article and Find Full Text PDF

The commonly used plant constitutive expression vector pBI121 was modified by insertion of two directly orientated lox sites each at one end of the selectable marker gene NPTII and by replacing the GUS gene with a sequence composed of multiple cloning sites (MCS). The resulting plant expression vector pBI121-lox-MCS is widely usable to accommodate various target genes through the MCS, and more importantly to allow the NPTII gene removed from transformed plants upon the action of the Cre recombinase. In addition, the CaMV 35S promoter located upstream of the MCS can be substituted with any other promoters to form plant vectors with expression features specified by the introduced promoters.

View Article and Find Full Text PDF

In genetic modification of plants, once the transformants are obtained, selection markers are no longer required in mature plants. At present, the Cre/lox site-specific recombination system is most widely used to eliminate the selectable marker genes from the transgenic plants. In this study, attempt was made to favour the selection of marker-free plants in the re-transformation method.

View Article and Find Full Text PDF

To determine whether axonal terminals emanating from the central nucleus of amygdala (Ce) to the parabrachial nucleus (PBN) contain gamma-aminobutyric acid (GABA) as their neurotransmitter, an electron microscopic study was performed employing the combined techniques of WGA-HRP anterograde tracing and post-embedding immunocytochemistry for GABA. Our analysis distinguished a large population of GABA immunopositive axonal terminals from the Ce that exhibited symmetrical synaptic contacts with neurons in the lateral parabrachial nucleus. Additionally, most retrogradely labeled dendrites and perikarya received synaptic contacts from GABA immunoreactive terminals, with some of them originating from the Ce.

View Article and Find Full Text PDF

The Cre/loxP system derived from bacteriophage P1 is widely used to carry out complex manipulations of DNA molecules both in vitro and in vivo. In order to further characterize and modify the Cre/loxP system, a convenient method for assaying the recombination efficiency is needed. A simple and visible assay is described, in which two incompatible plasmids, separately carrying the cre gene and loxP-flanked gfp gene, were co-transferred into E.

View Article and Find Full Text PDF

Cholinergic and gamma-aminobutyric acid (GABA) mechanisms in the dorsolateral pontomesencephalic tegmentum have been implicated in the control of active (REM) sleep and wakefulness. To determine the relationships between neurons that contain these neurotransmitters in this region of the brainstem in adult cats, combined light and electron microscopic immunocytochemical procedures were employed. Light microscopic analyses revealed that choline acetyltransferase (ChAT) and GABA immunoreactive neurons were distributed throughout the laterodorsal and pedunculopontine tegmental nuclei (LDT and PPT).

View Article and Find Full Text PDF