Publications by authors named "Hong-Chen Gu"

Purpose: To evaluate the effectiveness of contrast-enhanced susceptibility-weighted imaging with ultrasmall superparamagnetic iron oxide (USPIO-enhanced SWI) in the assessment of intratumoral vascularity in hepatocellular carcinoma (HCC).

Materials And Methods: Orthotopic xenograft HCC nude mouse models were established first and magnetic resonance imaging (MRI) examinations were performed on a 1.5T MR scanner 28 days later.

View Article and Find Full Text PDF

Magnetic mesoporous silica nanoparticles (M-MSNs) are emerging as one of the most appealing candidates for theranostic carriers. Herein, a simple synthesis method of M-MSNs with a single Fe(3)O(4) nanocrystal core and a mesoporous shell with radially aligned pores was elaborated using tetraethyl orthosilicate (TEOS) as silica source, cationic surfactant CTAB as template, and 1,3,5-triisopropylbenzene (TMB)/decane as pore swelling agents. Due to the special localization of TMB during the synthesis process, the pore size was increased with added TMB amount within a limited range, while further employment of TMB lead to severe particle coalescence and not well-developed pore structure.

View Article and Find Full Text PDF

Calcium phosphate (CaP) has been used as the vector for gene transfection in the past three decades with the characteristics of excellent biocompatibility and biodegradability. However, clinical application of calcium phosphate is still not popular due to poor-controlling of DNA/CaP complex preparation and its low transfection efficiency. In this study, block copolymer (PLGA-mPEG) assisted synthesis of hydroxylapatite (HAP) nanorods and DNA post-adsorbing method for transfection in vitro have been reported.

View Article and Find Full Text PDF

In this study, the endocytosis and the internalization mechanism of aminosilane-coated Fe(3)O(4) nanoparticles into human lung cancer cell line SPC-A1 was studied compared with human lung cell line WI-38 in vitro. The particle endocytosis behavior was studied by using Transmission Electron Microscope (TEM) and Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). It was found that aminosilane-coated Fe(3)O(4) nanoparticles could be greatly taken up by SPC-A1 human cancer cells (202 pg iron/cell) but not by WI-38 human lung cells (13 pg iron/cell).

View Article and Find Full Text PDF

We report a general synthetic method for construction of size-controlled Ag-Fe3O4 heterodimeric nanoparticles using the Fe3O4 nanoparticles as the seeds. The Ag-Fe3O4 heterodimeric nanoparticle can be controlled by tuning the size of the Fe3O4 seed and reaction conditions for synthesis of the Ag nanoparticles grown on it. The as-synthesized nanoparticles can be readily converted into aqueous-soluble form with newly introduced functional groups on the surface of Ag-Fe3O4 heterodimeric nanoparticles.

View Article and Find Full Text PDF

A cascading polyamidoamine (PAMAM) dendrimer was synthesized on the surface of magnetite nanoparticles to allow enhanced immobilization of bovine serum albumin (BSA). Characterization of the synthesis revealed exponential doubling of the surface amine from generations one through four starting with an amino silane initiator. Furthermore, transmission electron microscopy (TEM) revealed clear dispersion of the dendrimer-modified magnetite nanoparticles in methanol solution.

View Article and Find Full Text PDF

Objective: To Prepare surface functional magnetic microspheres for the separation of vascular endothelial growth factor (VEGF) nucleic acid and lactase enzyme immobilization.

Methods: Using suspension polymerization methods to copolymerize MA-styrene containing magnetite nanoparticles and GMA-styrene also containing magnetite nanoparticles, respectively. Both the carboxyl-modified magnetic microspheres and epoxy-modified magnetic microspheres were obtained.

View Article and Find Full Text PDF

The rheological properties of titanium dioxide dispersed in water are measured over a wide range of powder concentrations, temperatures, and pH values. The value of intrinsic viscosity of titanium dioxide measured with an Ubbelohde capillary viscometer is 3.55, which is useful for determining the shape and aggregation property of the particles.

View Article and Find Full Text PDF