The low-density lipoprotein receptor (LDLR) is a major apolipoprotein receptor that regulates cholesterol homeostasis. LDLR deficiency is associated with cognitive impairment by the induction of synaptopathy in the hippocampus. Despite the close relationship between LDLR and neurodegenerative disorders, proteomics research for protein profiling in the LDLR knockout (KO) model remains insufficient.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
November 2023
The ubiquitin-proteasome system (UPS) is an essential protein quality controller for regulating protein homeostasis and autophagy. Ubiquitination is a protein modification process that involves the binding of one or more ubiquitins to substrates through a series of enzymatic processes. These include ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3).
View Article and Find Full Text PDFIn ovarian cancer patients, the 5-year survival rate is 90% for stages I and II, but only 30% for stages III and IV. Unfortunately, as 75% of the patients are diagnosed at stages III and IV, many experience a recurrence. To ameliorate this, it is necessary to develop new biomarkers for early diagnosis and treatment.
View Article and Find Full Text PDFUbiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) that remove mono or polyubiquitin chains from target proteins. Depending on cancer types, USP7 has two opposing roles: oncogene or tumor suppressor. Moreover, it also known that USP7 functions in the cell cycle, apoptosis, DNA repair, chromatin remodeling, and epigenetic regulation through deubiquitination of several substrates including p53, mouse double minute 2 homolog (MDM2), Myc, and phosphatase and tensin homolog (PTEN).
View Article and Find Full Text PDFInter-α-trypsin inhibitor heavy chain 4 (ITI-H4) is one of the acute phase proteins and is mainly related with inflammatory diseases such as bacterial bloodstream infection and recurrent pregnancy loss (RPL). In a previous study, ITI-H4 was reported to be cleaved by kallikrein B1 (KLKB1) and its cleaved form induces the imbalance between pro- and anti-inflammatory cytokines. Therefore, in this study, putative substrates of ITI-H4 were isolated by immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2023
α-synuclein is one of the proteins involved in degenerative neuronal diseases such as Parkinson's disease (PD) or Lewy body dementia (LBD). The pathogenesis is imparted by the abnormal accumulation of α-synuclein resulting in the formation of a Lewy body (LB) and exerting neurotoxicity via an unknown mechanism. Regulation of α-synuclein is achieved by the ubiquitin-proteasome system (UPS), which influences protein homeostasis via inducing proteasome-dependent degradation by attaching a small molecule (ubiquitin) to the substrate.
View Article and Find Full Text PDFUbiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) in the ubiquitin-specific protease (USP) family. It is a key regulator of numerous cellular functions including immune response, cell cycle, DNA damage and repair, epigenetics, and several signaling pathways. USP7 acts by removing ubiquitin from the substrate proteins.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
May 2022
The mitogen-activated protein kinase (MAPK) signaling pathway is the primary regulatory module of various cellular processes such as cell proliferation, differentiation, and stress responses. This pathway converts external stimuli to cellular responses via three major kinases: mitogen-activated protein kinase (MAPK), mitogen-activated protein kinase kinase (MAPKK), and mitogen-activated protein kinase kinase kinase (MAPKKK). Ubiquitination is a post-translational modification of proteins with ubiquitin, which results in the formation of mono- or poly-ubiquitin chains of substrate proteins.
View Article and Find Full Text PDFThe Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer's disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers.
View Article and Find Full Text PDF