Publications by authors named "Hong Zhang Chen"

Background: Myocardial infarction (MI) triggers a strong inflammatory response that is associated with myocardial fibrosis and cardiac remodeling. Interleukin (IL)-1β and IL-18 are key players in this response and are controlled by NLRP3-inflammatory bodies. Oridonin is a newly reported NLRP3 inhibitor with strong anti-inflammatory activity.

View Article and Find Full Text PDF

As an extension of intuitionistic fuzzy numbers, intuitionistic trapezoidal fuzzy numbers (ITrFNs) are useful in expressing complex fuzzy information with an 'interval value'. This study focuses on multi-attribute decision-making (MADM) problems with unknown attribute weights under an ITrFN environment. We initially present an entropy measure for ITrFNs by using the relative closeness of technique for order preference by similarity to an ideal solution.

View Article and Find Full Text PDF

Gas double-dynamic solid-state fermentation (SSF) is a promising strategy with the potential in transforming open-pattern fermentation into closed-pattern fermentation. This paper investigated gas double-dynamic SSF performance in cultivating Coniothyrium minitans (C. minitans), as well as its effect on physiology of C.

View Article and Find Full Text PDF

A series of γ-[Glu]-Val or γ-[Glu]-Met were synthesized in the presence of donor (Gln) and corresponding acceptor (Val or Met) through transpeptidation catalyzed by the glutaminase from Bacillus amyloliquefaciens. Gln in excess significantly (p < .05) improved the yield of γ-[Glu]-Val/Met except for γ-Glu-Val/Met.

View Article and Find Full Text PDF

Solid state enzymatic hydrolysis (SSEH) has many advantages, such as higher sugar concentration, lower operating costs, and less energy input. It should be a potential approach for the industrial application of lignocellulosic ethanol. The purpose of this work is to review the enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading and introduce its both challenges and perspectives.

View Article and Find Full Text PDF

Levulinic acid production, directly from lignocellulosic biomass, resulted in low yields due to the poor substrate accessibility and occurrence of side reactions. The effects of reaction conditions, enzymatic pretreatment, and inhibitor addition on the conversion of steam-exploded rice straw (SERS) short fiber to levulinic acid catalyzed by solid superacid were investigated systematically. The results indicated that the optimal reaction conditions were temperature, time, and solid superacid concentration combinations of 200 °C, 15 min, and 7.

View Article and Find Full Text PDF

The simultaneous saccharification and fermentation (SSF) of corn stover biomass for ethanol production was performed by integrating steam explosion (SE) pretreatment, hydrolysis and fermentation. Higher SE pretreatment severity and two-step size reduction increased the specific surface area, swollen volume and water holding capacity of steam exploded corn stover (SECS) and hence facilitated the efficiency of hydrolysis and fermentation. The ethanol production and yield in SSF increased with the decrease of particle size and post-washing of SECS prior to fermentation to remove the inhibitors.

View Article and Find Full Text PDF

Selective structure fractionation combined with periodic peristalsis was exploited to improve the conversion performance of corn stover. The increase of glucan and lignin content and the decrease of xylan content in stem pith were highest after SE, whereas they were lowest in stem node. Glucan conversion increased in this order: steam node View Article and Find Full Text PDF

Periodic peristalsis was used to release water constraint and increase high solids enzymatic hydrolysis efficiency. Glucan and xylan conversion in periodic peristalsis enzymatic hydrolysis (PPEH) at 21% solid loading increased by 5.2-6.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces an automated method using image processing and support vector machines (SVM) to efficiently screen mold strains, specifically focusing on Monascus colonies.
  • - It achieved an accuracy of 80.6%, which is comparable to traditional methods, and can screen 500 colonies in just 20-30 minutes, making it the fastest published approach.
  • - Utilizing this method, researchers identified 13 high-producing strains, with the top strain yielding 2.8 times more pigment and 1.9 times more lovastatin than the original strain.
View Article and Find Full Text PDF

Physical structure changes of solid medium were investigated to reveal effects of steam explosion sterilization on solid-state fermentation (SSF). Results indicated that steam explosion changed the structure of solid medium at both molecular and three-dimensional structural levels, which exposed hydrophilic groups and enlarged pores and cavities. It was interesting to find that pores where capillary water located were the active sites for SSF, due to the close relationship among capillary water relaxation time, specific surface area and fermentation performance.

View Article and Find Full Text PDF

Background: Mass transfer plays an important role in determining the efficiency of the biofuel conversion. However, adverse effect of shear stress from traditional agitation inhibits the cell growth and production of biofuels. How to enhance the mass transfer with less adverse effect is considered as one of the important bioengineering issues.

View Article and Find Full Text PDF

Simultaneous saccharification and co-fermentation (SSCF) of steam exploded corn stover (SECS) was investigated at 5-25% solid loadings compared with other conversion processes. SECS was washed with a 15-fold excess of deionized water to remove inhibitors of hydrolysis and fermentation. The concentration, yield, and productivity of ethanol was 34.

View Article and Find Full Text PDF

The water in a solid substrate is generally divided into three forms: hygroscopic, capillary, and free. However, there are few methods available for detecting the contents of different states of water in substrates. In this paper, low-field NMR and MRI were used to analyze the water occurrence characteristics of steam-exploded corn straw in solid-state fermentation (SSF).

View Article and Find Full Text PDF

The spectrophotometer is the most used analysis equipment in traditional colorimetric methods. However, the operation of using a spectrophotometer is time-consuming and labor-intensive, which presents practical difficulties in rapid detection. To this end, we present a digital color analysis method, using the typical 3,5-dinitrosalicylic acid (DNS) method for glucose detection as an example.

View Article and Find Full Text PDF

A novel conversion process using steam explosion combined with enzymatic digestibility was exploited to increase sugar yield. Results showed that glucan and xylan recovery decreased with the increase of holding temperature and residence time in SE, respectively, while glucan and xylan conversion exhibited an opposite trend. The optimal conditions of steam explosion were 160 °C and 48 min, under which glucan and xylan recovery was 93.

View Article and Find Full Text PDF

Traditional sterilization of solid medium (SM) requires lengthy time, degrades nutrients, and even sterilizes inadequately compared with that of liquid medium due to its low thermal conductivity. A novel sterilization strategy, high-temperature and short-time steam explosion (SE), was exploited for SM sterilization in this study. Results showed that SE conditions for complete sterilization were 172 °C for 2 min and 128 °C for 5 min.

View Article and Find Full Text PDF

Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity.

View Article and Find Full Text PDF

Background: Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass.

View Article and Find Full Text PDF

The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated.

View Article and Find Full Text PDF

Background: Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect.

View Article and Find Full Text PDF

In order to solve the inhomogeneity of cornstalk as fiber material to manufacture dissolving pulp, a novel method of steam explosion coupling mechanical carding was put forward to fractionate cornstalk long fiber for the production of cornstalk dissolving pulp. The fractionated long fiber had homogeneous structure and low hemicellulose and ash content. The fiber cell content was up to 85% in area, and the hemicellulose and ash content was 8.

View Article and Find Full Text PDF

Budded baculovirus has become an important vector for gene delivery, vaccine development, protein expression in insect and mammalian cells, and many other emerging applications. For high-throughput applications or for long-term storage and long-distance shipping, it would be useful if the infectivity and transduction abilities of baculovirus could be maintained at room temperature under dehydrated condition. The aim of this study was to design an optimized formula that preserves the activity of baculovirus stocks during prolonged periods of dehydration at various storage temperatures.

View Article and Find Full Text PDF