Publications by authors named "Hong Yuen Wong"

Cribriform prostate cancer, found in both invasive cribriform carcinoma (ICC) and intraductal carcinoma (IDC), is an aggressive histological subtype that is associated with progression to lethal disease. To delineate the molecular and cellular underpinnings of ICC/IDC aggressiveness, this study examines paired ICC/IDC and benign prostate surgical samples by single-cell RNA-sequencing, TCR sequencing, and histology. ICC/IDC cancer cells express genes associated with metastasis and targets with potential for therapeutic intervention.

View Article and Find Full Text PDF

Activating variants in the PEST region of have been associated with aggressive phenotypes in human cancers, including triple-negative breast cancer (TNBC). Previous studies suggested that PEST domain variants in TNBC patients resulted in increased cell proliferation, invasiveness, and decreased overall survival. In this study, we assess the phenotypic transformation of activating variants and their response to standard of care therapies.

View Article and Find Full Text PDF

Outcomes for men with localized prostate cancer vary widely, with some men effectively managed without treatment on active surveillance, while other men rapidly progress to metastatic disease despite curative-intent therapies. One of the strongest prognostic indicators of outcome is grade groups based on the Gleason grading system. Gleason grade 4 prostate cancer with cribriform morphology is associated with adverse outcomes and can be utilized clinically to improve risk stratification.

View Article and Find Full Text PDF

Intratumor heterogeneity is an important mediator of poor outcomes in many cancers, including breast cancer. Genetic subclones frequently contribute to this heterogeneity; however, their growth dynamics and interactions remain poorly understood. PIK3CA and HER2 alterations are known to coexist in breast and other cancers.

View Article and Find Full Text PDF

Older AML patients have low remission rates and poor survival outcomes with standard chemotherapy. Microtransplantation (MST) refers to infusion of allogeneic hematopoietic stem cells without substantial engraftment. MST has been shown to improve clinical outcomes compared with chemotherapy alone.

View Article and Find Full Text PDF

Measurable residual disease (MRD) testing after initial chemotherapy treatment can predict relapse and survival in acute myeloid leukemia (AML). However, it has not been established if repeat molecular or genetic testing during chemotherapy can offer information regarding the chemotherapy sensitivity of the leukemic clone. Blood from 45 adult AML patients at day 1 and 4 of induction ( = 35) or salvage ( = 10) cytotoxic chemotherapy was collected for both quantitative real-time PCR (qPCR) assessment () and next generation sequencing (>500 × depth) of 49 gene regions recurrently mutated in MDS/AML.

View Article and Find Full Text PDF

Germline mutation in GATA2 can lead to GATA2 deficiency characterized by a complex multi-system disorder that can present with many manifestations including variable cytopenias, bone marrow failure, myelodysplastic syndrome/acute myeloid leukemia (MDS/AML), and severe immunodeficiency. Penetrance and expressivity within families is often variable. There is a spectrum of bone marrow disease in symptomatic cytopenic patients ranging from hypocellular marrows without overt dysplasia to those with definitive MDS, AML, or chronic myelomonocytic leukemia.

View Article and Find Full Text PDF

Treatment options are limited for patients with high-risk myelodysplastic syndrome (MDS). The azanucleosides, azacitidine and decitabine, are first-line therapy for MDS that induce promoter demethylation and gene expression of the highly immunogenic tumor antigen NY-ESO-1. We demonstrated that patients with acute myeloid leukemia (AML) receiving decitabine exhibit induction of NY-ESO-1 expression in circulating blasts.

View Article and Find Full Text PDF

Background/purpose: The combined contributions of oncogenes and tumor suppressor genes toward carcinogenesis remain poorly understood. Elucidation of cancer gene cooperativity can provide new insights leading to more effective use of therapies.

Experimental Design/methods: We used somatic cell genome editing to introduce singly and in combination PIK3CA mutations (E545K or H1047R) with TP53 alterations (R248W or knockout), to assess any enhanced cancerous phenotypes.

View Article and Find Full Text PDF

Ki-67 expression is correlated with cell proliferation and is a prognostic marker for various cancers; however, its function is unknown. Here we demonstrate that genetic disruption of Ki-67 in human epithelial breast and colon cancer cells depletes the cancer stem cell niche. Ki-67 null cells had a proliferative disadvantage compared to wildtype controls in colony formation assays and displayed increased sensitivity to various chemotherapies.

View Article and Find Full Text PDF

Male breast cancer comprises less than 1% of breast cancer diagnoses. Although estrogen exposure has been causally linked to the development of female breast cancers, the etiology of male breast cancer is unclear. Here, we show via fluorescence in situ hybridization (FISH) and droplet digital PCR (ddPCR) that the Y chromosome was clonally lost at a frequency of ~16% (5/31) in two independent cohorts of male breast cancer patients.

View Article and Find Full Text PDF

Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as "negative" by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers.

View Article and Find Full Text PDF

The tumor protein 53 (TP53) tumor suppressor gene is the most frequently somatically altered gene in human cancers. Here we show expression of N-Myc down-regulated gene 1 (NDRG1) is induced by p53 during physiologic low proliferative states, and mediates centrosome homeostasis, thus maintaining genome stability. When placed in physiologic low-proliferating conditions, human TP53 null cells fail to increase expression of NDRG1 compared with isogenic wild-type controls and TP53 R248W knockin cells.

View Article and Find Full Text PDF

Purpose: Mutations in the estrogen receptor (ER)α gene, ESR1, have been identified in breast cancer metastases after progression on endocrine therapies. Because of limitations of metastatic biopsies, the reported frequency of ESR1 mutations may be underestimated. Here, we show a high frequency of ESR1 mutations using circulating plasma tumor DNA (ptDNA) from patients with metastatic breast cancer.

View Article and Find Full Text PDF

Clinical genetic testing of BRCA1 and BRCA2 is commonly performed to identify specific individuals at risk for breast and ovarian cancers who may benefit from prophylactic therapeutic interventions. Unfortunately, it is evident that deleterious BRCA1 alleles demonstrate variable penetrance and that many BRCA1 variants of unknown significance (VUS) exist. In order to further refine hereditary risks that may be associated with specific BRCA1 alleles, we performed gene targeting to establish an isogenic panel of immortalized human breast epithelial cells harboring eight clinically relevant BRCA1 alleles.

View Article and Find Full Text PDF

Objectives: Circulating plasma DNA is being increasingly used for biomedical and clinical research as a substrate for genetic testing. However, cell lysis can occur hours after venipuncture when using standard tubes for blood collection, leading to an increase in contaminating cellular DNA that may hinder analysis of circulating plasma DNA. Cell stabilization agents can prevent cellular lysis for several days, reducing the need for immediate plasma preparation after venipuncture, thereby facilitating the ease of blood collection and sample preparation for clinical research.

View Article and Find Full Text PDF

Tamoxifen is effective for treating estrogen receptor-alpha (ER) positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. Here we describe a previously unidentified gene, MACROD2 that confers tamoxifen resistance and estrogen independent growth.

View Article and Find Full Text PDF

The PIK3CA gene encodes for the p110 alpha isoform of PI3 kinase and is one of the most frequently mutated oncogenes in human cancers. However, the mechanisms by which PIK3CA mutations activate cell signaling are not fully understood. Here we used a phosphoproteomic approach to compare differential phosphorylation patterns between human breast epithelial cells and two isogenic somatic cell knock in derivatives, each harboring a distinct PIK3CA mutation.

View Article and Find Full Text PDF

Metastatic breast cancer is incurable, yet highly treatable with endocrine, HER2 directed and chemotherapies improving survival for many patients. Successful treatment depends on the ability to monitor disease burden and response to therapies. Recently, a proof of principle study has shown that plasma tumor DNA (ptDNA) can be used as a reliable breast cancer biomarker in metastatic disease, due to its sensitivity and wide dynamic range.

View Article and Find Full Text PDF

Loss-of-heterozygosity (LOH) analysis of archival tumor tissue can aid in determining the clinical significance of BRCA variants. Here we describe an approach for assessing LOH in formalin-fixed, paraffin-embedded (FFPE) tissues using variant-specific probes and droplet digital polymerase chain reaction (ddPCR). We evaluated LOH in 2 related breast cancer patients harboring a rare missense BRCA2 variant of unknown clinical significance (c.

View Article and Find Full Text PDF

Purpose: Detecting circulating plasma tumor DNA (ptDNA) in patients with early-stage cancer has the potential to change how oncologists recommend systemic therapies for solid tumors after surgery. Droplet digital polymerase chain reaction (ddPCR) is a novel sensitive and specific platform for mutation detection.

Experimental Design: In this prospective study, primary breast tumors and matched pre- and postsurgery blood samples were collected from patients with early-stage breast cancer (n = 29).

View Article and Find Full Text PDF

Digital polymerase chain reaction is a new technology that enables detection and quantification of cancer DNA molecules from peripheral blood. Using this technique, we identified mutant PIK3CA DNA in circulating ptDNA (plasma tumor DNA) from a patient with concurrent early stage breast cancer and non-small cell lung cancer. The patient underwent successful resection of both her breast and lung cancers, and using standard Sanger sequencing the breast cancer was shown to harbor the identical PIK3CA mutation identified in peripheral blood.

View Article and Find Full Text PDF

The selective pressures leading to cancers with mutations in both KRAS and PIK3CA are unclear. Here, we show that somatic cell knockin of both KRAS G12V and oncogenic PIK3CA mutations in human breast epithelial cells results in cooperative activation of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways in vitro, and leads to tumor formation in immunocompromised mice. Xenografts from double-knockin cells retain single copies of mutant KRAS and PIK3CA, suggesting that tumor formation does not require increased copy number of either oncogene, and these results were also observed in human colorectal cancer specimens.

View Article and Find Full Text PDF

Breast cancer is the most prevalent life-threatening cancer in women and the second leading cause of cancer associated deaths. Consequently, optimizing breast cancer therapy to increase cure rates in early stage disease and improve life expectancy and palliation for patients with metastasis is a critical need and major area of research in medical oncology. This article focuses on the development of personalized therapy in breast cancer though the use of targeted therapies and their associated biomarkers.

View Article and Find Full Text PDF

Biallelic inactivation of cancer susceptibility gene BRCA1 leads to breast and ovarian carcinogenesis. Paradoxically, BRCA1 deficiency in mice results in early embryonic lethality, and similarly, lack of BRCA1 in human cells is thought to result in cellular lethality in view of BRCA1's essential function. To survive homozygous BRCA1 inactivation during tumorigenesis, precancerous cells must accumulate additional genetic alterations, such as p53 mutations, but this requirement for an extra genetic "hit" contradicts the two-hit theory for the accelerated carcinogenesis associated with familial cancer syndromes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl8uso699j3kigstoe1fh5op9dhkiftc9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once