Publications by authors named "Hong Y Yan"

Vision is very important to fish as it is required for foraging food, fighting competitors, fleeing from predators, and finding potential mates. Vertebrates express opsin genes in photoreceptor cells to receive visual signals, and the variety of light levels in aquatic habits has driven fish to evolve multiple opsin genes with expression profiles that are highly plastic. In this study, red shiners (Cyprinella lutrensis) were exposed to four water turbidity treatments and their opsin genes were cloned to elucidate how opsin gene expression could be modulated by ambient light conditions.

View Article and Find Full Text PDF

Vertebrates have four classes of cone opsin genes derived from two rounds of genome duplication. These are short wavelength sensitive 1(SWS1), short wavelength sensitive 2(SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). Teleosts had another genome duplication at their origin and it is believed that only one of each cone opsin survived the ancestral teleost duplication event.

View Article and Find Full Text PDF

To clarify the effect of invasive alien plants on ecosystem functions, soil total carbon (TC), total carbon (TN), and total phosphorus (TP) contents were studied in the exotic invasive plant Spartina alterniflora marsh with different durations and the native species Cyperus malaccensis marsh in the Minjiang River estuary. The results showed that there were different variations of TC, TN and TP at 0-50 cm soil layer in the C. malaccensis marsh invaded by S.

View Article and Find Full Text PDF

Losses of cone opsin genes are noted in animals that are nocturnal or rely on senses other than vision. We investigated the cone opsin repertoire of night-active South American weakly electric fish. We obtained opsin gene sequences from genomic DNA of 3 gymnotiforms (Eigenmannia virescens, Sternopygus macrurus, Apteronotus albifrons) and the assembled genome of the electric eel (Electrophorus electricus).

View Article and Find Full Text PDF

Background: Vision, an important sensory modality of many animals, exhibits plasticity in that it adapts to environmental conditions to maintain its sensory efficiency. Nuptial coloration is used to attract mates and hence should be tightly coupled to vision. In Taiwan, two closely related bitterlings ( and ) with different male nuptial colorations reside in different habitats.

View Article and Find Full Text PDF

In vertebrates, reproduction is regulated by the brain-pituitary-gonad (BPG) axis, where the gonadotropin-releasing hormone (GnRH) is one of the key components. However, very little is known about the possible role of GnRH in the environmental and feedback control of fish reproduction. To investigate this, full-length gnrh2 (chicken GnRH II) and gnrh3 (salmon GnRH) sequences of male three-spined sticklebacks (Gasterosteus aculeatus), which are clustered with the taxa of the same GnRH type as other Euteleostei, were cloned and annotated.

View Article and Find Full Text PDF
Article Synopsis
  • Catadromous fishes, like Anguilla marmorata, migrate between freshwater and ocean environments, adapting their physiological traits such as visual sensitivity and salinity tolerance during different life stages.
  • The study focused on how upstream migration affects the spectral sensitivity and opsin gene expression in A. marmorata, revealing that these eels have a duplex retina with distinct rod and cone photoreceptors and exhibit various spectral sensitivities.
  • The research found that the blue-shifted Rh1d opsin in these eels can influence their vision and likely plays a significant role in guiding their migratory behavior.
View Article and Find Full Text PDF

Optomotor studies have shown that three-spined sticklebacks (Gasterosteus aculeatus) are more sensitive to red during summer than winter, which may be related to the need to detect the red breeding colour of males. This study aimed to determine whether this change of red light sensitivity is specifically related to reproductive physiology. The mRNA levels of opsin genes were examined in the retinae of sexually mature and immature fish, as well as in sham-operated males, castrated control males, or castrated males implanted with androgen 11-ketoandrostenedione (11 KA), maintained under stimulatory (L16:D8) or inhibitory (L8:D16) photoperiods.

View Article and Find Full Text PDF

Although cuttlefish are capable of showing diverse camouflage body patterns against a variety of background substrates, whether they show background preference when given a choice of substrates is not well known. In this study, we characterized the background choice of post-embryonic cuttlefish (Sepia pharaonis) and examined the effects of rearing visual environments on their background preferences. Different rearing backgrounds (enriched, uniformly grey and checkerboard) were used to raise cuttlefish from eggs or hatchlings, and four sets of two-background-choice experiments (differences in contrast, shape, size and side) were conducted at day 1 and weeks 4, 8 and 12 post-hatch.

View Article and Find Full Text PDF

Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO(2)-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication.

View Article and Find Full Text PDF

The goal of this study was to investigate how the eyes of different species of moray eel evolved to cope with limitations to vision imposed on them by the photic environments in which they reside. The comparative retinal histological structures and visual pigment characteristics including opsin gene sequences, of four species of moray eel inhabiting diverse habitats (i.e.

View Article and Find Full Text PDF

Camouflage is the primary defense behavior in cephalopods. It is known that cuttlefish immediately after hatching are capable of showing various body patterns for concealing themselves, however recent studies suggest that maturation of camouflage body patterns is faster for cuttlefish (Sepia officinalis) reared in enriched environments than those reared in impoverished environments. Since camouflage patterning in cephalopods is predominately visually driven, this study specifically investigates effects of the rearing background contrast on the maturation of body patterns in cuttlefish (Sepia pharaonis).

View Article and Find Full Text PDF

The milkfish (Chanos chanos Forsskål, 1775) is a euryhaline fish widely distributed in tropical and subtropical Indo-Pacific waters. It is unique in having in the cephalic region adipose eyelid tissue that begins to develop in the larval stage and is completely formed by the Juvenile stage. The formation of the adipose eyelids coincides with the onset of active swimming ability.

View Article and Find Full Text PDF

Three species of seabreams, Acanthopagrus berda, Acanthopagrus schlegelii and Pagrus major, living at different depths, were chosen to investigate how visual spectra and opsin genes evolve in response to various photic environments. The lambda max of photoreceptors and opsin genes were measured and cloned from these species. Eight to twelve nm spectral shifts in the rod and blue cone cells were observed between the deep-sea, P.

View Article and Find Full Text PDF

It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds.

View Article and Find Full Text PDF

Opsariichthys pachycephalus and Candidia barbatus are two phylogenetically related freshwater cyprinids that both exhibit colorful, yet quite different nuptial coloration. This study was designed to test the hypothesis that differences in nuptial coloration between two species could reflect differences in color perception ability and the opsin genes that coded for it. Genes encoding the visual pigments of these two species were cloned and sequenced, lambda(max) of cone photoreceptors and the reflectance spectra of their body coloration were measured to test the hypothesis.

View Article and Find Full Text PDF

The fathead minnow (Pimephales promelas) was employed to examine if dietary vitamin E supplementation could protect the inner ear from the deleterious effects of noise. Fish were fed one of the three experimental diets containing either: (1) low vitamin E content (14.5 mg/kg diet as alpha-tocopheryl acetate), (2) an adequate amount of vitamin E (50 mg/kg), or (3) high vitamin E content (450 mg/kg).

View Article and Find Full Text PDF

Many underwater bioacoustical recording experiments (e.g., fish sound production during courtship or agonistic encounters) are usually conducted in a controlled laboratory environment of small-sized tanks.

View Article and Find Full Text PDF

As concerns about the effects of underwater anthropogenic noises on the auditory function of organisms increases, it is imperative to assess if all organisms are equally affected by the same noise source. Consequently, auditory capabilities of an organism need to be evaluated and compared interspecifically. Teleost fishes provide excellent models to examine these issues due to their diversity of hearing capabilities.

View Article and Find Full Text PDF