Publications by authors named "Hong Y Ren"

Objective: The Guanzhong Plain of Shaanxi Province is a severely afflicted hemorrhagic fever with renal syndrome (HFRS) epidemic area, while HFRS prevalence has decreased in most epidemic areas in China. Little information is available regarding the leading fine-scale influencing factors in this highly HFRS-concentrated area and the roles of natural environmental and socioeconomic factors. To investigate this, two regions in the Guanzhong Plain, that is, the Chang'an District and Hu County, with similar geographical environments, different levels of economic development, and high epidemic prevalence, were chosen as representative areas of the HFRS epidemic.

View Article and Find Full Text PDF

We report on how the endoplasmic reticulum (ER)-associated-autophagy pathway (ERAA) delivers P23H-rhodopsin (P23H-R) to the lysosome. P23H-R accumulates in an ERAD-resistant conformation that is stabilized in a detergent-soluble state by DNAJB12 and Hsp70. P23H-R, DNAJB12, and FIP200 colocalize in discrete foci that punctuate the rim of omegasome rings coated by WIPI1.

View Article and Find Full Text PDF

The transmembrane Hsp40 DNAJB12 and cytosolic Hsp70 cooperate on the endoplasmic reticulum's (ER) cytoplasmic face to facilitate the triage of nascent polytopic membrane proteins for folding versus degradation. N1303K is a common mutation that causes misfolding of the ion channel CFTR, but unlike F508del-CFTR, biogenic and functional defects in N1303K-CFTR are resistant to correction by folding modulators. N1303K is reported to arrest CFTR folding at a late stage after partial assembly of its N-terminal domains.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.

View Article and Find Full Text PDF

Objective: Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp.

View Article and Find Full Text PDF

DNAJB12 (JB12) is an endoplasmic reticulum (ER)-associated Hsp40 family protein that recruits Hsp70 to the ER surface to coordinate the function of ER-associated and cytosolic chaperone systems in protein quality control. Hsp70 is stress-inducible, but paradoxically, we report here that JB12 was degraded by the proteasome during severe ER stress. Destabilized JB12 was degraded by ER-associated degradation complexes that contained HERP, Sel1L, and gp78.

View Article and Find Full Text PDF

Objective: To understand the mechanism of invasion by Legionella dumoffii.

Methods: The L. dumoffii strain Tex-KL was mutated using the Tn903 derivative, Tn903dIIlacZ.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects.

View Article and Find Full Text PDF

Protein conformational maladies such as Huntington Disease are characterized by accumulation of intracellular and extracellular protein inclusions containing amyloid-like proteins. There is an inverse correlation between proteotoxicity and aggregation, so facilitated protein aggregation appears cytoprotective. To define mechanisms for protective protein aggregation, a screen for suppressors of nuclear huntingtin (Htt103Q) toxicity was conducted.

View Article and Find Full Text PDF

Molecular chaperones triage misfolded proteins via action as substrate selectors for quality control (QC) machines that fold or degrade clients. Herein, the endoplasmic reticulum (ER)-associated Hsp40 JB12 is reported to participate in partitioning mutant conformers of gonadotropin-releasing hormone receptor (GnRHR), a G protein-coupled receptor, between ER-associated degradation (ERAD) and an ERQC autophagy pathway. ERQC autophagy degrades E90K-GnRHR because pools of its partially folded and detergent-soluble degradation intermediates are resistant to ERAD.

View Article and Find Full Text PDF

Conformational diseases are associated with the conversion of normal proteins into aggregation-prone toxic conformers with structures similar to that of β-amyloid. Spatial distribution of amyloid-like proteins into intracellular quality control centers can be beneficial, but cellular mechanisms for protective aggregation remain unclear. We used a high-copy suppressor screen in yeast to identify roles for the Hsp70 system in spatial organization of toxic polyglutamine-expanded Huntingtin (Huntingtin with 103Q glutamine stretch [Htt103Q]) into benign assemblies.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR.

View Article and Find Full Text PDF

Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S.

View Article and Find Full Text PDF

CHIP, the carboxyl-terminus of Hsp70 interacting protein, is both an E3 ubiquitin ligase and an Hsp70 co-chaperone and is implicated in the degradation of cytosolic quality control and numerous disease substrates. CHIP has been shown to monitor the folding status of the CFTR protein, and we have successfully reconstituted this activity using a recombinant CFTR fragment consisting of the cytosolic NBD1 and R domains. We have found that efficient ubiquitination of substrates requires chaperone activity to either deliver the substrate to CHIP or to maintain the substrate in a ubiquitination-competent conformation.

View Article and Find Full Text PDF

Relative contributions of folding kinetics versus protein quality control (QC) activity in the partitioning of non-native proteins between life and death are not clear. Cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis serves as an excellent model to study this question because folding of nascent CFTR is inefficient and deletion of F508 causes accumulation of CFTRΔF508 in a kinetically trapped, but foldable state. Herein, a novel endoplasmic reticulum (ER)-associated Hsp40, DNAJB12 (JB12) is demonstrated to play a role in control of CFTR folding efficiency.

View Article and Find Full Text PDF

MC4R contributes to the control of food intake and energy expenditure, and single nucleotide polymorphisms (SNPs) in the MC4R gene have clearly been associated with backfat depth, feed intake and growth rate in pig. Our objectives were to scan the complete coding region by sequencing in samples from eight cattle breeds, to estimate the frequency of the SNPs in the MC4R gene and to determine if individual genotypes were associated with several economic traits. Five polymorphisms were detected at position 19 (C/A), 20 (A/T), 83(T/C), 128 (G/A), and 1069 (G/C), and the last one was significantly associated with backfat thickness value (P < 0.

View Article and Find Full Text PDF

Quality control systems facilitate polypeptide folding and degradation to maintain protein homeostasis. Molecular chaperones promote folding, whereas the ubiquitin/proteasome system mediates degradation. We show here that Saccharomyces cerevisiae Ubr1 and Ubr2 ubiquitin ligases promote degradation of unfolded or misfolded cytosolic polypeptides.

View Article and Find Full Text PDF

Premature degradation of CFTRDeltaF508 causes cystic fibrosis (CF). CFTRDeltaF508 folding defects are conditional and folding correctors are being developed as CF therapeutics. How the cellular environment impacts CFTRDeltaF508 folding efficiency and the identity of CFTRDeltaF508's correctable folding defects is unclear.

View Article and Find Full Text PDF

The cytoplasm is protected against the perils of protein misfolding by two mechanisms: molecular chaperones (which facilitate proper folding) and the ubiquitin-proteasome system, which regulates degradation of misfolded proteins. CHIP (carboxyl terminus of Hsp70-interacting protein) is an Hsp70-associated ubiquitin ligase that participates in this process by ubiquitylating misfolded proteins associated with cytoplasmic chaperones. Mechanisms that regulate the activity of CHIP are, at present, poorly understood.

View Article and Find Full Text PDF