Publications by authors named "Hong Xun"

Substitution metal doping strategies are crucial for developing catalysts capable of activating O, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO (HE-TiO) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO.

View Article and Find Full Text PDF

Self-assembly of nanomaterials into hierarchical structure is of great interest to fabricate functional materials. However, programmable design of the assembled structures remains a great challenge. Herein, we reported a programmable self-assembly strategy to customize the assembled structure.

View Article and Find Full Text PDF

Balancing optical modulation and response time is crucial for achieving high coloration efficiency in electrochromic materials. Here, internal electric fields are introduced to titanium dioxide nanosheets by constructing abundant amorphous-crystalline interfaces, ensuring large optical modulation while reducing response time and therefore improving coloration efficiency. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals the presence of numerous amorphous-crystalline phase boundaries in titanium dioxide nanosheets.

View Article and Find Full Text PDF

Intermetallic compounds (IMCs) with ordered atomic structure have gained great attention as nanocatalysts for its enhanced activity and stability. Although the reliance of IMC preparation on high-temperature annealing is well known, a comprehensive understanding of the formation mechanisms of IMCs in this process is currently lacking. Here, we employ aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) to track the formation process of IMCs on carbon supports during in-situ annealing, by taking PtFe as a case study within an industry-relevant impregnation synthesis framework.

View Article and Find Full Text PDF

Phase transformation offers an alternative strategy for the synthesis of nanomaterials with unconventional phases, allowing us to further explore their unique properties and promising applications. Herein, we first observed the amorphization of Pt nanoparticles on the RuO surface by scanning transmission electron microscopy. Density functional theory calculations demonstrate the low energy barrier and thermodynamic driving force for Pt atoms transferring from the Pt cluster to the RuO surface to form amorphous Pt.

View Article and Find Full Text PDF

Integrating multiple functional components into vertically stacked heterostructures offers a prospective approach to manipulating the physicochemical properties of materials. The synthesis of vertically stacked heterogeneous noble metal oxides remains a challenge. Herein, we report a surface segregation approach to create vertically stacked amorphous Ir/Ru/Ir oxide nanosheets (NSs).

View Article and Find Full Text PDF

Constructing the pore structures in amorphous metal oxide nanosheets can enhance their electrocatalytic performance by efficiently increasing specific surface areas and facilitating mass transport in electrocatalysis. However, the accurate synthesis for porous amorphous metal oxide nanosheets remains a challenge. Herein, a facile nitrate-assisted oxidation strategy is reported for synthesizing amorphous mesoporous iridium oxide nanomeshes (a-m IrO NMs) with a pore size of ∼4 nm.

View Article and Find Full Text PDF

One-dimensional (1D) high-entropy compounds (HECs) with subnano diameters are highly attractive because long-range electron delocalization may occur along the high-entropy atomic chain, which results in extraordinary properties. Nevertheless, synthesizing such 1D HECs presents a substantial challenge, and the physicochemical attributes of these novel structures remain ambiguous. Herein, we developed a comelting-filling-freezing-modification (co-MFFM) method for synthesizing 1D high-entropy metal phosphide (HEP) by simultaneously encapsulating various metal cations within single-walled carbon nanotubes (SWCNTs) followed with a phosphorization process.

View Article and Find Full Text PDF

Cation exchange (CE) in metal oxides under mild conditions remains an imperative yet challenging goal to tailor their composition and enable practical applications. Herein, we first develop an amorphization-induced strategy to achieve room-temperature CE for universally synthesizing single-atom doped InO nanosheets (NSs). Density functional theory (DFT) calculations elucidate that the abundant coordination-unsaturated sites present in a-InO NSs are instrumental in surmounting the energy barriers of CE reactions.

View Article and Find Full Text PDF

Transition metal oxides with high theoretical capacities are promising anode materials for lithium-ion batteries (LIBs). However, the sluggish reaction kinetics remain a bottleneck for fast-charging applications due to its slow Li migration rate. Herein, a strategy is reported of significantly reducing the Li diffusion barrier of amorphous vanadium oxide by constructing a specific ratio of the VO local polyhedron configuration in amorphous nanosheets.

View Article and Find Full Text PDF

Spiral two-dimensional (2D) nanosheets exhibit unique physical and chemical phenomena due to their twisted structures. While self-assembly of clusters is an ideal strategy to form hierarchical 2D structures, it is challenging to form spiral nanosheets. Herein, we first report a screw dislocation involved assembled method to obtain 2D spiral cluster assembled nanosheets (CANs) with uniform square morphology.

View Article and Find Full Text PDF

A precise modulation of heterogeneous catalysts in structural and surface properties promises the development of more sustainable advanced oxidation water purification technologies. However, while catalysts with superior decontamination activity and selectivity are already achievable, maintaining a long-term service life of such materials remains challenging. Here, we propose a crystallinity engineering strategy to break the activity-stability tradeoff of metal oxides in Fenton-like catalysis.

View Article and Find Full Text PDF

The nucleation pathway determines the structures and thus properties of formed nanomaterials, which is governed by the free energy of the intermediate phase during nucleation. The amorphous structure, as one of the intermediate phases during nucleation, plays an important role in modulating the nucleation pathway. However, the process and mechanism of crystal nucleation from amorphous structures still need to be fully investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Strain can significantly affect the electronic properties and catalytic performance of noble metal nanomaterials, making it a focus for enhancing their effectiveness.
  • A new method allows for the manipulation of planar strain in ultrathin noble metal nanosheets by creating boundaries between amorphous and crystalline phases, exposing active interfaces.
  • Strained iridium (Ir) nanosheets show a 4.5 times increase in catalytic activity for hydrogen evolution compared to standard platinum (Pt/C) catalysts, with similar strain engineering techniques applicable to ruthenium (Ru) and rhodium (Rh) nanosheets for improved performance.
View Article and Find Full Text PDF

Supported single-atom catalysts (SACs), with the extremely homogenized active sites could achieve high hydrogenation selectivity toward one of the functional groups coexisting in the reactant molecule. However, as to the target group, the control of selective recognition and activation by SACs still remains a challenge. Herein, the phase engineering of the support is adopted to control the chemo-recognition behavior of SACs in selective hydrogenation.

View Article and Find Full Text PDF

Selective photoreduction of carbon dioxide (CO ) into carbon-neutral fuels such as methane (CH ) is extremely desirable but remains a challenge since sluggish multiple proton-electron coupling transfer and various C intermediates are involved. Herein, a synergistic function between single Pd atoms (Pd ) and Pd nanoparticles (Pd ) on graphitic carbon nitride (C N ) for photocatalytic CO methanation is presented. The catalyst achieves a high selectivity of 97.

View Article and Find Full Text PDF

Amorphous nanomaterials have aroused extensive interest due to their unique properties. Their performance is highly related with their distinct atomic arrangements, which have no long-range order but possess short- to medium-range order. Herein, an overview of state-of-the-art synthesis methods of amorphous nanomaterials, structural characteristics and their electrochemical properties is presented.

View Article and Find Full Text PDF

The catalytic properties of supported metal heterostructures critically depend on the design of metal sites. Although it is well-known that the supports can influence the catalytic activities of metals, precisely regulating the metal-support interactions to achieve highly active and durable catalysts still remain challenging. Here, the authors develop a support effect in the oxide-supported metal monomers (involving Pt, Cu, and Ni) catalysts by means of engineering nitrogen-assisted nanopocket sites.

View Article and Find Full Text PDF

Lithium-sulfur batteries show great potential to achieve high-energy-density storage, but their long-term stability is still limited due to the shuttle effect caused by the dissolution of polysulfides into electrolyte. Herein, we report a strategy of significantly improving the polysulfides adsorption capability of cobaltous oxide by amorphization-induced surface electronic states modulation. The amorphous cobaltous oxide nanosheets as the cathode additives for lithium-sulfur batteries demonstrates the rate capability and cycling stability with an initial capacity of 1248.

View Article and Find Full Text PDF

Heterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh-based catalysts with high activity and selectivity.

View Article and Find Full Text PDF

Developing a rapid and low cost approach to access atomically dispersed metal catalysts (ADMCs) supported by carbon is important but still challenging. Here, an electric flash strategy using high voltage for the rapid fabrication of carbon-supported ADMCs within 1 min is reported. Continuous plasma arc results in nitrogen-doped carbon ultrathin nanosheets, while an intermittent spark pulse constructs carbon hollow nanospheres via blasting effect, and both structures are decorated with atomically dispersed cobalt.

View Article and Find Full Text PDF

Developing highly stable and efficient catalysts toward the oxygen reduction reaction is important for the long-term operation in proton exchange membrane fuel cells. Reported herein is a facile synthesis of two-dimensional coplanar Pt-carbon nanomeshes (NMs) that are composed of highly distorted Pt networks (neck width of 2.05±0.

View Article and Find Full Text PDF

Purpose: High-resolution imaging of the critical anatomic structures of the eye, especially of the anterior chamber, in vivo, remains a challenge, even with currently available state-of-the-art medical imaging techniques. This study aims for the noninvasive and noncontact sequential imaging of the iridocorneal angle, especially the trabecular meshwork (TM) and the cornea of the eye in high-resolution using a newly developed imaging platform.

Methods: Bessel beam scanned light sheet fluorescence microscopy is used to attain high-resolution images of the TM.

View Article and Find Full Text PDF

Herein, we report a negative pressure pyrolysis to access dense single metal sites (Co, Fe, Ni etc.) with high accessibility dispersed on three-dimensional (3D) graphene frameworks (GFs), during which the differential pressure between inside and outside of metal-organic frameworks (MOFs) promotes the cleavage of the derived carbon layers and gradual expansion of mesopores. In situ transmission electron microscopy and Brunauer-Emmett-Teller tests reveal that the formed 3D GFs possess an enhanced mesoporosity and external surface area, which greatly favor the mass transport and utilization of metal sites.

View Article and Find Full Text PDF

The controllable synthesis of stable single-metal site catalysts with an expected coordination environment for high catalytic activity and selectivity is still challenging. Here, we propose a cation-exchange strategy for precise production of an edge-rich sulfur (S) and nitrogen (N) dual-decorated single-metal (M) site catalysts (M = Cu, Pt, Pd, etc.) library.

View Article and Find Full Text PDF