Publications by authors named "Hong Weiling"

() is one of the major causes of human death. In its battle with humans, has fully adapted to its host and developed ways to evade the immune system. At the same time, the human immune system has developed ways to respond to .

View Article and Find Full Text PDF

Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam1) can generate 38,016 different isoforms through largely stochastic, yet highly biased, alternative splicing. These isoforms are required for nervous functions. However, the functional significance of splicing bias remains unknown.

View Article and Find Full Text PDF

The gene potentially generates 38,016 distinct isoforms via mutually exclusive splicing, which are required for both nervous and immune functions. However, the mechanism underlying splicing regulation remains obscure. Here we show apparent evolutionary signatures characteristic of competing RNA secondary structures in exon clusters 6 and 9 of in the two midge species ( and ).

View Article and Find Full Text PDF

Alternative pre-mRNA splicing remarkably expands protein diversity in eukaryotes. can generate three major 3' splice isoforms that exhibit distinct innate immune recognition and defenses against various microbial infections. However, the regulatory mechanisms underlying the uniquely biased splicing pattern at the 3' variable region remain unclear.

View Article and Find Full Text PDF

Background: The immunoglobulin (Ig) superfamily receptor Down syndrome cell adhesion molecule (Dscam) gene can generate tens of thousands of isoforms via alternative splicing, which is essential for both nervous and immune systems in insects. However, further information is required to develop a comprehensive view of Dscam diversification across the broad spectrum of Chelicerata clades, a basal branch of arthropods and the second largest group of terrestrial animals.

Results: In this study, a genome-wide comprehensive analysis of Dscam genes across Chelicerata species revealed a burst of nonclassical Dscams, categorised into four types-mDscam, sDscamα, sDscamβ, and sDscamγ-based on their size and structure.

View Article and Find Full Text PDF

Exon or cassette duplication is an important means of expanding protein and functional diversity through mutually exclusive splicing. However, the mechanistic basis of this process in non-arthropod species remains poorly understood. Here, we demonstrate that MRP1 genes underwent tandem exon duplication in Nematoda, Platyhelminthes, Annelida, Mollusca, Arthropoda, Echinodermata, and early-diverging Chordata but not in late-diverging vertebrates.

View Article and Find Full Text PDF

Drosophila Dscam1 (Down Syndrome Cell Adhesion Molecules) and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the extraordinary isoform diversity from a single genomic locus. Dscam1 encodes 38,016 distinct isoforms via mutually exclusive splicing in D. melanogaster, while the vertebrate clustered Pcdhs utilize alternative promoters to generate isoform diversity.

View Article and Find Full Text PDF

Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings.

View Article and Find Full Text PDF

RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth.

View Article and Find Full Text PDF

Introduction: Tuberculosis remains a formidable threat to global public health. Multidrug-resistant tuberculosis presents increasing burden on the control strategy. D-Cycloserine (DCS) is an effective second-line drug against Mycobacterium tuberculosis (M.

View Article and Find Full Text PDF

Bacterial cell division is an attractive target for new antibiotics. FtsZ is a major cytoskeletal protein widespread among archaea and bacteria. FtsZ has a filament-forming GTPase and a structural homologue of eukaryotic tubulin.

View Article and Find Full Text PDF

Autophagy is a cellular homeostasis mechanism to eliminate unwanted or excessive organelles, or for the turnover of long-life cytosolic macromolecules. During Mycobacterium tuberculosis infection, autophagy represents not only an antimicrobial mechanism for the clearance of the intracellular pathogen, but also prevents excessive inflammation, avoiding the adverse effects on host. Here we focus on the anti-tuberculosis autophagy and signal pathways involved, and attempt to depict an integrative map of the interaction between autophagy and cytokine, ROS production, vitamin D, and inflammatory response.

View Article and Find Full Text PDF

Forkhead-associated domain (FHA) is a phosphopeptide recognition domain embedded in some regulatory proteins. With similar fold type to important eukaryotic signaling molecules such as Smad2 and IRF3, the role of bacterial FHA domain is intensively pursued. Reported bacterial FHA domain roles include: regulation of glutamate and lipids production, regulation of cell shape, type III secretion, ethambutol resistance, sporulation, signal transduction, carbohydrate storage and transport, and pathogenic and symbiotic host-bacterium interactions.

View Article and Find Full Text PDF

FtsZ is a widely distributed major cytoskeletal protein involved in the archaea and bacteria cell division. It is the most critical component in the division machinery and similar to tubulin in structure and function. Four major roles of FtsZ have been characterized: cell elongation, GTPase, cell division, and bacterial cytoskeleton.

View Article and Find Full Text PDF