Publications by authors named "Hong Soo Park"

A broadband metasurface flat lens is proposed as a polarization-independent wideband superstrate for wave focusing and gain enhancement at Ka-band. The proposed metasurface structure consists of four metal layers and is designed with diagonally symmetric unit cells to accommodate both the vertical and horizontal polarizations. The focusing ability of the proposed metasurface flat lens is validated via simulation and measurement, where normally incident plane waves are shown to be enhanced by up to 11 dB as a result of wave focusing.

View Article and Find Full Text PDF

For far-field wireless power transfer (WPT) in a complex propagation environment, a time-reversal (TR) based WPT that can overcome the drawbacks of conventional beamforming (BF) by taking advantage of multipath has been recently proposed. However, due to the WPT performance of BF and TR depending on the complexity of the propagation environment, the performance prediction between BF versus TR would be required. We present a detailed and generalized analysis of the recently proposed performance metric referred to as the peak received power ratio (PRPR) for linear array-based WPT.

View Article and Find Full Text PDF

Metasurfaces allow the rapid development of compact and flat electromagnetic devices owing to their capability in manipulating the wavefront of electromagnetic waves. Particularly, with respect to the metasurface lenses, wide operational bandwidth and wide incident angle behavior are critically required for practical applications. Herein, a single-layer phase gradient metasurface lens is presented to achieve millimeter-wave focusing at a focal point of 13 mm regardless of the incident angle.

View Article and Find Full Text PDF

Globular clusters are usually found in galaxies, and they are excellent tracers of dark matter. Long ago it was suggested that intracluster globular clusters (IGCs) may exist that are bound to a galaxy cluster rather than to any single galaxy. Here we present a map showing the large-scale distribution of globular clusters over the entire Virgo cluster.

View Article and Find Full Text PDF