Gas sensors present an alternative to traditional off-package food quality assessment, due to their high sensitivity and fast response without the need of sample pretreatment. The safe integration of gas sensors into packaging without compromising sensitivity, response rate, and stability, however, remains a challenge. Such packaging integration of spoilage sensors is crucial for preventing food waste and transitioning toward more sustainable supply chains.
View Article and Find Full Text PDFHolographic displays have been a long-standing ambition for decades to realize true-to-life reconstruction. However, their practical adoption is hindered by their subpar image quality compared to two-dimensional displays, which is fundamentally limited by restricted spatial frequency bandwidth and artifacts. We address the limitation by using a symmetry-broken amplitude-only spatial light modulator, demonstrating image quality comparable to that of two-dimensional displays.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
The correlation between structural transformation and optical characteristics of cesium lead bromide (CsPbBr) nanocrystals (NCs) suggests insights into their growth mechanism and optical performance. Systematic control of reaction parameters led to the successful fabrication of on-demand shape-morphing CsPbBr NCs. Transmission electron microscopy observations showed that the shape transformation from nanocubes to microcrystals could be accelerated by increasing the precursor:ligand molar ratio and reaction time.
View Article and Find Full Text PDFThe utilization of multi-omics research has gained popularity in clinical investigations. However, effectively managing and merging extensive and diverse datasets presents a challenge due to its intricacy. This research introduces a Multi-Omics Analysis Sandbox Toolkit, an online platform designed to facilitate the exploration, integration, and visualization of datasets ranging from single-omics to multi-omics.
View Article and Find Full Text PDFColloidal quantum dots (QDs) are attracting research interest because of their unique optical properties that result from the quantum confinement effect. ZnSe QDs, which are II-VI semiconductors, offer a wide direct bandgap (2.7 eV), making them promising for applications such as light-emitting diodes, photodetectors, and biomedical labeling.
View Article and Find Full Text PDFColloidal quantum dots (QDs) are promising candidates for next-generation display technology because of their unique optical properties and have already appeared in the market as a high-end product. On the basis of their extraordinary properties, QD emissions with a given chemical composition can be tailored in a wide spectral window due to quantum size effects, which constitutes a key advantage of QDs in the display field. Specifically, investigations of structure-dependent and composition-dependent characterizations outside the quantum confinement effect have become an important part of practical applications.
View Article and Find Full Text PDFBackground And Aims: Longitudinal change in income is crucial in explaining cardiovascular health inequalities. However, there is limited evidence for cardiovascular disease (CVD) risk associated with income dynamics over time among individuals with type 2 diabetes (T2D).
Methods: Using a nationally representative sample from the Korean National Health Insurance Service database, 1 528 108 adults aged 30-64 with T2D and no history of CVD were included from 2009 to 2012 (mean follow-up of 7.
Background: The risk of incident atrial fibrillation (AF) among breast cancer survivors, especially for younger women, and cancer treatment effects on the association remain unclear. This study aimed to investigate the risk of AF among breast cancer survivors and evaluate the association by age group, length of follow-up, and cancer treatment.
Methods: Using data from the Korean Health Insurance Service database (2010-2017), 113,232 women newly diagnosed with breast cancer (aged ≥ 18 years) without prior AF history who underwent breast cancer surgery were individually matched 1:5 by birth year to a sample female population without cancer (n = 566,160) (mean[SD] follow-up, 5.
Considering the recent increase in the number of colorectal cancer (CRC) cases in South Korea, we aimed to clarify the molecular characteristics of CRC unique to the Korean population. To gain insights into the complexities of CRC and promote the exchange of critical data, RNA-sequencing analysis was performed to reveal the molecular mechanisms that drive the development and progression of CRC; this analysis is critical for developing effective treatment strategies. We performed RNA-sequencing analysis of CRC and adjacent normal tissue samples from 214 Korean participants (comprising a total of 381 including 169 normal and 212 tumor samples) to investigate differential gene expression between the groups.
View Article and Find Full Text PDFIodixanol is an iso-osmolar non-ionic dimeric hydrophilic contrast agent with a higher viscosity than the monomeric agents. It is the only Food and Drug Administration (FDA)-approved iso-osmolar agent in the United States, and it is the only contrast agent with an FDA-approved indication for use in cardiac computed tomographic angiography (CCTA), to assist in the diagnostic evaluation of patients with suspected coronary artery disease. In clinical studies, it has been noted to have fewer side effects and similar image quality when compared to low-osmolar contrast media.
View Article and Find Full Text PDFAberrant DNA methylation plays a critical role in the development and progression of colorectal cancer (CRC), which has high incidence and mortality rates in Korea. Various CRC-associated methylation markers for cancer diagnosis and prognosis have been developed; however, they have not been validated for Korean patients owing to the lack of comprehensive clinical and methylome data. Here, we obtained reliable methylation profiles for 228 tumor, 103 adjacent normal, and two unmatched normal colon tissues from Korean patients with CRC using an Illumina Infinium EPIC array; the data were corrected for biological and experiment biases.
View Article and Find Full Text PDFAlterations in DNA methylation play an important pathophysiological role in the development and progression of colorectal cancer. We comprehensively profiled DNA methylation alterations in 165 Korean patients with colorectal cancer (CRC), and conducted an in-depth investigation of cancer-specific methylation patterns. Our analysis of the tumor samples revealed a significant presence of hypomethylated probes, primarily within the gene body regions; few hypermethylated sites were observed, which were mostly enriched in promoter-like and CpG island regions.
View Article and Find Full Text PDFAberrant DNA methylation plays a pivotal role in the onset and progression of colorectal cancer (CRC), a disease with high incidence and mortality rates in Korea. Several CRC-associated diagnostic and prognostic methylation markers have been identified; however, due to a lack of comprehensive clinical and methylome data, these markers have not been validated in the Korean population. Therefore, in this study, we aimed to obtain the CRC methylation profile using 172 tumors and 128 adjacent normal colon tissues of Korean patients with CRC.
View Article and Find Full Text PDFImportance: Evidence of the association between income fluctuation and risk of type 2 diabetes (T2D) is scarce.
Objective: To investigate whether sustained low or high income and income changes are associated with incidence of T2D.
Design, Setting, And Participants: In this population-based cohort study, more than 7.
DNA methylation regulates gene expression and contributes to tumorigenesis in the early stages of cancer. In colorectal cancer (CRC), CpG island methylator phenotype (CIMP) is recognized as a distinct subset that is associated with specific molecular and clinical features. In this study, we investigated the genomewide DNA methylation patterns among patients with CRC.
View Article and Find Full Text PDFWhile recent research has shown that holographic displays can represent photorealistic 3D holograms in real time, the difficulty in acquiring high-quality real-world holograms has limited the realization of holographic streaming systems. Incoherent holographic cameras, which record holograms under daylight conditions, are suitable candidates for real-world acquisition, as they prevent the safety issues associated with the use of lasers; however, these cameras are hindered by severe noise due to the optical imperfections of such systems. In this work, we develop a deep learning-based incoherent holographic camera system that can deliver visually enhanced holograms in real time.
View Article and Find Full Text PDFThe generation of high-purity localized trions, dynamic exciton-trion interconversion, and their spatial modulation in two-dimensional (2D) semiconductors are building blocks for the realization of trion-based optoelectronic devices. Here, we present a method for the all-optical control of the exciton-to-trion conversion process and its spatial distributions in a MoS monolayer. We induce a nanoscale strain gradient in a 2D crystal transferred on a lateral metal-insulator-metal (MIM) waveguide and exploit propagating surface plasmon polaritons (SPPs) to localize hot electrons.
View Article and Find Full Text PDFPlant diseases that affect crop production and productivity harm both crop quality and quantity. To minimize loss due to disease, early detection is a prerequisite. Recently, different technologies have been developed for plant disease detection.
View Article and Find Full Text PDFThe optical modal gain of CdZnTe/ZnTe double quantum dots was measured using a variable stripe length method, where large and small quantum dots are separated with a ZnTe layer. With a large (~18 nm) separation layer thickness of ZnTe, two gain spectra were observed, which correspond to the confined exciton levels of the large and small quantum dots, respectively. With a small (~6 nm) separation layer thickness of ZnTe, a merged single gain spectrum was observed.
View Article and Find Full Text PDFThe micropipette, pencil-shaped with an aperture diameter of a few micrometers, is a potentially promising tool for the three-dimensional (3D) printing of individual microstructures based on its capability to deliver low volumes of nanomaterial solution on a desired spot resulting in micro/nanoscale patterning. Here, we demonstrate a direct 3D printing technique in which a micropipette with a cadmium selenide (CdSe) quantum dot (QD) solution is guided by an atomic force microscope with no electric field and no piezo-pumping schemes. We define the printed CdSe QD wires, which are a composite material with a QD-liquid coexistence phase, by using photoluminescence and Raman spectroscopy to analyze their intrinsic properties and additionally demonstrate a means of directional falling.
View Article and Find Full Text PDFObjective: There is limited evidence on the association of sustained low-income status, income changes, and all-cause mortality risk in individuals with type 2 diabetes (T2D).
Research Design And Methods: Using the Korean Health Insurance Service database, we studied 1,923,854 adults with T2D (aged ≥30 years) without cardiovascular disease and cancer, who were enrolled from 2009 through 2012 and followed to the end of 2020 (median 10.8 years of follow-up).
Holography is one of the most prominent approaches to realize true-to-life reconstructions of objects. However, owing to the limited resolution of spatial light modulators compared to static holograms, reconstructed objects exhibit various coherent properties, such as content-dependent defocus blur and interference-induced noise. The coherent properties severely distort depth perception, the core of holographic displays to realize 3D scenes beyond 2D displays.
View Article and Find Full Text PDFPrinted electrical gas sensors are a low-cost, lightweight, low-power, and potentially disposable alternative to gas sensors manufactured using conventional methods such as photolithography, etching, and chemical vapor deposition. The growing interest in Internet-of-Things, smart homes, wearable devices, and point-of-need sensors has been the main driver fueling the development of new classes of printed electrical gas sensors. In this Perspective, we provide an insight into the current research related to printed electrical gas sensors including materials, methods of fabrication, and applications in monitoring food quality, air quality, diagnosis of diseases, and detection of hazardous gases.
View Article and Find Full Text PDF