The ability to construct three-dimensional architectures via nanoscale engineering is important for emerging applications in sensors, catalysis, controlled drug delivery, microelectronics, and medical diagnostics nanotechnologies. Because of their well-defined and highly organized symmetric structures, viral plant capsids provide a 3D scaffold for the precise placement of functional inorganic particles yielding advanced hierarchical hybrid nanomaterials. In this study, we used turnip yellow mosaic virus (TYMV), grafting gold nanoparticles (AuNP) or iron oxide nanoparticles (IONP) onto its outer surface.
View Article and Find Full Text PDFThe multifunctional nano drug delivery system (MNDDS) has much revolutionized in cancer treatment, aiming to eliminate many disadvantages of conventional formulations. This paper herein proposes and demonstrates MNDDS inspired by poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymer co-loaded Doxorubicin and magnetic iron oxide nanoparticles (MIONs) with a 1 : 1 (w/w) optimal ratio. In vitro drug release kinetics of Doxorubicin from this nanosystem fitted best to the Weibull kinetic model and can be described by the classical Fickian diffusion mechanism under acidic pH conditions.
View Article and Find Full Text PDF