Publications by authors named "Hong Men"

Article Synopsis
  • Reducing sugar intake is important for health, and using odors to enhance sweetness can improve food enjoyment, but current subjective methods to evaluate this are unreliable.
  • The study introduces an EEG-LGFNet model, which uses advanced electroencephalogram techniques to objectively measure how odors affect sweetness perception in the brain.
  • This model was tested with data from 16 subjects and showed superior performance in quantifying the effects of odor on sweetness, with key findings relevant for food development, personalized nutrition, and neuroscience.
View Article and Find Full Text PDF

Research has shown that plants have the ability to detect environmental changes and generate electrical signals in response. These electrical signals can regulate the physiological state of plants and produce corresponding feedback. This suggests that plants have the potential to be used as biosensors for monitoring environmental information.

View Article and Find Full Text PDF

As the need for food authenticity verification increases, sensory evaluation of food odors has become widely recognized. This study presents a theory based on electroencephalography (EEG) to create an Olfactory Perception Dimensional Space (EEG-OPDS), using feature engineering and ensemble learning to establish material and emotional spaces based on odor perception and pleasure. The study examines the intrinsic connection between these two spaces and explores the mechanisms of integration and differentiation in constructing the OPDS.

View Article and Find Full Text PDF

The material content and nutritional composition of tea vary during different picking periods, leading to variations in tea quality. The absence of rapid evaluation methods for identifying tea quality at different picking periods hinders the smooth operation and maintenance of agricultural production and market sales. In this work, hyperspectral technology combined with the multibranch kernel attention network (MBKA-Net) is proposed to identify the overall quality of tea during different picking periods.

View Article and Find Full Text PDF

At present, the sensory evaluation of food mostly depends on artificial sensory evaluation and machine perception, but artificial sensory evaluation is greatly interfered with by subjective factors, and machine perception is difficult to reflect human feelings. In this article, a frequency band attention network (FBANet) for olfactory electroencephalogram (EEG) was proposed to distinguish the difference in food odor. First, the olfactory EEG evoked experiment was designed to collect the olfactory EEG, and the preprocessing of olfactory EEG, such as frequency division, was completed.

View Article and Find Full Text PDF

In the food field, with the improvement of people's health and environmental protection awareness, degradable plastics have become a trend to replace non-degradable plastics. However, their appearance is very similar, making it difficult to distinguish them. This work proposed a rapid identification method for white non-degradable and degradable plastics.

View Article and Find Full Text PDF

In this work, a neural network framework for hyperspectral information recognition was proposed, combined with residual block and convolutional block attention module (CBAM) to enhance the detection performance of hyperspectral for tracing the rice quality. Firstly, the hyperspectral image system was used to obtain the hyperspectral information of the rice. Secondly, due to the small data set, the structure of the residual network was designed based on the characteristics of the hyperspectral information to prevent overfitting the model.

View Article and Find Full Text PDF

Cortisol is commonly used as a significant biomarker of psychological or physical stress. With the accelerated pace of life, non-invasive cortisol detection at the point of care (POC) is in high demand for personal health monitoring. In this paper, an ultrasensitive immunosensor using gold nanoparticles/molybdenum disulfide/gold nanoparticles (AuNPs/MoS/AuNPs) as transducer was explored for non-invasive salivary cortisol monitoring at POC with the miniaturized differential pulse voltammetry (DPV) system based on a smartphone.

View Article and Find Full Text PDF

As a taste bionic system, electronic tongues can be used to derive taste information for different types of food. On this basis, we have carried forward the work by making it, in addition to the ability of accurately distinguish samples, be more expressive by speaking evaluative language like human beings. Thus, this paper demonstrates the correlation between the qualitative digital output of the taste bionic system and the fuzzy evaluation language that conform to the human perception mode.

View Article and Find Full Text PDF

In this study, to obtain a texture perception that is closer to the human sense, we designed eight bionic tongue indenters based on the law of the physiology of mandibular movements and tongue movements features, set up a bionic tongue distributed mechanical testing device, performed in vitro simulations to obtain the distributed mechanical information over the tongue surface, and preliminarily constructed a food fineness perception evaluation model. By capturing a large number of tongue movements during chewing, we analyzed and simulated four representative tongue movement states including the tiled state, sunken state, raised state, and overturned state of the tongue. By analyzing curvature parameters and the Gauss curvature of the tongue surface, we selected the regional circle of interest.

View Article and Find Full Text PDF

In this paper, we aim to use odor fingerprint analysis to identify and detect various odors. We obtained the olfactory sensory evaluation of eight different brands of Chinese liquor by a lab-developed intelligent nose. From the respective combination of the time domain and frequency domain, we extract features to reflect the samples comprehensively.

View Article and Find Full Text PDF

Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples.

View Article and Find Full Text PDF

Multi-sensor data fusion can provide more comprehensive and more accurate analysis results. However, it also brings some redundant information, which is an important issue with respect to finding a feature-mining method for intuitive and efficient analysis. This paper demonstrates a feature-mining method based on variable accumulation to find the best expression form and variables' behavior affecting beer flavor.

View Article and Find Full Text PDF

In view of the fact that there are disadvantages in that the class number must be determined in advance, the value of learning rates are hard to fix, etc., when using traditional competitive neural networks (CNNs) in electronic noses (E-noses), an optimized CNN method was presented. The optimized CNN was established on the basis of the optimum class number of samples according to the changes of the Davies and Bouldin (DB) value and it could increase, divide, or delete neurons in order to adjust the number of neurons automatically.

View Article and Find Full Text PDF