Pathogenic bacteria invade plant tissues and proliferate in the extracellular space. Plants have evolved the immune system to recognize and limit the growth of pathogens. Despite substantial progress in the study of plant immunity, the mechanism by which plants limit pathogen growth remains unclear.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
We demonstrate morphological and optical engineering by using processing additives and optical spacers for polymer solar cells. Among various processing additives, introduction of diphenyl ether (DPE) into the active layer results in the smoothest surface roughness with uniform and well-distributed donor/acceptor domains, and the device with DPE shows the highest device efficiency of 10.22% due to enhanced charge collection efficiency and minimized recombination loss.
View Article and Find Full Text PDFA central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial.
View Article and Find Full Text PDFA transgenic poplar, in which the RabG3bCA gene from Arabidopsis was overexpressed, was analyzed for its biomass composition and enzymatic digestibility after chemical pretreatment. In comparison with a wild-type poplar (WT), the transgenic poplar (OX8) showed 9.8% higher glucan content.
View Article and Find Full Text PDFAn Arabidopsis small GTPase, RabG3b, was previously characterized as a component of autophagy and as a positive regulator for xylem development in Arabidopsis. In this work, we assessed whether RabG3b modulates xylem-associated traits in poplar in a similar way as in Arabidopsis. We generated transgenic poplars (Populus alba × Populus tremula var.
View Article and Find Full Text PDFThe vascular system of plants consists of two conducting tissues, xylem and phloem, which differentiate from procambium cells. Xylem serves as a transporting system for water and signaling molecules and is formed by sequential developmental processes, including cell division/expansion, secondary cell wall deposition, vacuole collapse and programmed cell death (PCD). PCD during xylem differentiation is accomplished by degradation of cytoplasmic constituents, and it is required for the formation of hollow vessels, known as tracheary elements (TEs).
View Article and Find Full Text PDFThe tracheary elements (TEs) of the xylem serve as the water-conducting vessels of the plant vascular system. To achieve this, TEs undergo secondary cell wall thickening and cell death, during which the cell contents are completely removed. Cell death of TEs is a typical example of developmental programmed cell death that has been suggested to be autophagic.
View Article and Find Full Text PDFAll aerial parts of vascular plants are covered with cuticular waxes, which are synthesized by extensive export of intracellular lipids from epidermal cells to the surface. Although it has been suggested that plant lipid transfer proteins (LTPs) are involved in cuticular lipid transport, the in planta evidence is still not clear. In this study, a glycosylphosphatidylinositol-anchored LTP (LTPG1) showing higher expression in epidermal peels of stems than in stems was identified from an Arabidopsis (Arabidopsis thaliana) genome-wide microarray analysis.
View Article and Find Full Text PDFPurpose: Fluorouracil (5-FU) and leucovorin combination therapy have shown synergistic or additive effect against advanced colorectal cancer, but the frequency of mucositis and diarrhea is increased. Most previous studies have used high dose leucovorin (300 approximately 500 mg/m(2)). However, some studies of oxaliplatin and 5-FU with low-dose or high-dose leucovorin in Korea have shown similar response rates.
View Article and Find Full Text PDFPurpose: Caspase-3 is a cysteine protease that plays an important role in the process of apoptotic cell death, but little has been studied clinically on caspase-3 in lung cancer. Increased c-myc expression can result in mitosis or apoptosis, and its contribution to the pathogenesis and prognosis of lung cancer has gained interest. In the present study, the expressions of caspase-3 and c-myc, along with their possible correlations with prognostic variables, were analyzed in resected non-small cell lung carcinomas (NSCLC).
View Article and Find Full Text PDFPurpose: Increasing experimental evidence indicates that abnormal expression of c-kit may be implicated in the pathogenesis of a variety of solid tumors. It has been reported that over 70% of small cell lung cancer (SCLC) contain the c-kit receptor. In the present study, a c-kit analysis has been extended to non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFPurpose: To evaluate the response rates, toxicitiesy, and survival rates, to vinorelbine (Navelbine(R)), cisplatin and ifosfamide combination chemotherapy, of the patients with inoperable NSCLC (stage III and IV), who received vinorelbine (Navelbine(R)), cisplatin, ifosfamide combinationthe mentioned chemotherapy every 4 weeks.
Materials And Methods: This study included 26 patients with inoperable NSCLC (stage III and IV), who attended St. Vincent's Hospital Bbetween April 1999 and December 2001, 26 patients were included at St.