In this study, we simultaneously measured the group refractive index dispersion and thickness of fused silica using a scanning white light interferometer on a spectral range from 800 to 1050 nm. A delay error correction was performed using a He-Ne laser. The accuracy of the measured group refractive index dispersion of fused silica, when compared to the temperature-dependent Sellmeier equation, is within 4 × 10.
View Article and Find Full Text PDFThermal problems of high-repetition-rate stimulated Brillouin scattering (SBS) pulse compression in liquid media are theoretically and experimentally analyzed in detail. A wedge lens with less coma-aberration was designed using the ray tracing method and the thermally induced beam-pattern distortion was compensated by inhibiting thermal convection. The heat transfer form and fluid state were quantitatively analyzed for different SBS liquid media.
View Article and Find Full Text PDFWith mitigation of thermal effects in a generator cell based on a rotating off-centered lens, the effects of thermal blooming, self-defocusing, and thermal convection in the amplifier cell have experimentally proven to be the main factors limiting high-repetition-rate stimulated Brillouin scattering (SBS) pulse compression. To alleviate these effects, Galden HT270, which has a large viscosity coefficient, is used and compared experimentally. The operating repetition rate using HT270 was improved from 200 Hz to 1,000 Hz, comparable to the values in the literature.
View Article and Find Full Text PDFA new method using a rotating off-centered lens is proposed to reduce the heat accumulation at the focal spot of a stimulated Brillouin scattering phase conjugation mirror at high-repetition-rate operation. Theoretical simulation of the beam intensity pattern at the focal point indicates there is less coma-aberration using a rotating off-centered focusing lens than with a rotating wedge and a conventional lens. The resultant SBS output parameters using this new method are substantially improved comparable to those of a non-rotating conventional method for high-repetition-rate operation, while the former operates quite well for higher power and the latter operates only for lower input power.
View Article and Find Full Text PDFFor minimizing the spatial cross-sectional pulse width difference in the reflected SBS compressed beam, two new methods, blocking beam edge and parameter optimization, are proposed and compared experimentally. Results show that the sub-nanosecond compressed pulse width at the beam edge can be obtained by using both two methods in this paper. The pulse width difference between the beam center and the edge is minimized through selecting a proper medium and the optimized structural parameters in a single-cell SBS compressor.
View Article and Find Full Text PDFAn innovative flash LIDAR (light detection and ranging) system with high spatial resolution and high range precision is proposed in this paper. The proposed system consists of a polarization modulating Pockels cell (PMPC) and a micro-polarizer CCD camera (MCCD). The Pockels cell changes its polarization state with respect to time after a laser pulse is emitted from the system.
View Article and Find Full Text PDFThe capacity of cascaded multi-dithering technique in terms of scalability is analyzed by developing equations and performing simulations whose results are found to be in agreement with the earlier experimental result of a sixteen fiber beam combination using the cascaded multi-dithering technique.
View Article and Find Full Text PDFThe self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally.
View Article and Find Full Text PDFThe autofocus method has been investigated to improve the precise positioning of a substrate surface at the center of the laser focal spot in two-photon polymerization (TPP) nanofabrication. For this purpose, we developed a novel autofocus method using normalized image size, which was calculated with the second momentum radius (SMR) of two-photon induced fluorescence (TPIF). The SMR of TPIF was theoretically analyzed and experimentally compared with the average intensity of TPIF for various input laser powers.
View Article and Find Full Text PDFThe Cascaded Multi-Dithering theory, which allows coherent beam combining of M-by-N beam elements, is presented in this paper. The theory of Cascaded Multi-Dithering is briefly introduced, and demonstrated experimentally by combining sixteen-beams to verify its feasibility as an active phase control for scaling up the power of fiber lasers.
View Article and Find Full Text PDFA method to obtain an aberration-corrected Offner spectrometer without ray obstruction is proposed. A new, more efficient spectrometer optics design is suggested in order to increase its spectral resolution. The derivation of a new ring equation to eliminate ray obstruction is based on geometrical analysis of the ring fields for various numerical apertures.
View Article and Find Full Text PDFIn this paper, the improvement of range precision in a laser detection and ranging (LADAR) system by using two Geiger mode avalanche photodiodes (GmAPDs) is described. The LADAR system is implemented by using two GmAPDs with a beam splitter and applying comparative process to their ends. Then, the timing circuit receives the electrical signals only if each GmAPDs generates electrical signals simultaneously.
View Article and Find Full Text PDFWe propose a method capable of focusing a laser beam on a substrate automatically via fluorescence detection from the resin of a two-photon nanofabrication system. When two-photon absorption (TPA) occurs by focusing the laser beam in the resin, fluorescence is emitted from the focusing region in the visible range. The total pixel number above the threshold value of the fluorescence images obtained by a CCD camera is plotted on a graph in accordance with the focus position.
View Article and Find Full Text PDFIn this paper, we propose a new method that is capable of obtaining a clear 3D image by the reduction of false alarms caused by noise in the stage of acquisition of raw time of flight (TOF) data. This method is implemented by intensity dividing a laser-return pulse into two Geiger-mode avalanche photodiodes (GmAPDs); an AND gate compares the arrival time of the electrical signals from the GmAPDs. Despite the fact that the energy of a laser-return pulse is decreased by half, the false alarm probability is drastically decreased because the noise distributed randomly in the time domain is filtered out.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
May 2011
In this paper, a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45 ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. The combination of a GAPD with short dead time and a TDC with a multistop function enables the system to operate in a single-hit or a multihit mode during the acquisition of time-of-flight data.
View Article and Find Full Text PDFAn autofocus technique is proposed for a three-dimensional imaging, direct-detection laser radar system that uses a Geiger-mode avalanche photodiode focal plane array (GmAPD-FPA). This technique is implemented by pointing laser pulses on a target of interest and observing its scattered photon distribution on a GmAPD-FPA. Measuring the standard deviation of the photon distribution on a GmAPD-FPA enables the best focus condition to be found.
View Article and Find Full Text PDFIn this study, we report a neo-conceptive three-dimensionally (3D) crossing manifold micromixer (CMM) embedded in microchannel. Fabricated by sequential processes of photolithography and two photon absorption stereolithography, this leads to a microfluidic system with a built-in micromixer in a site controlled manner. The effectiveness of CMM is investigated numerically and experimentally.
View Article and Find Full Text PDFDiverse movements using optical manipulation have been introduced. These are generally performed in the focal region of the laser beam. To achieve a wider range of movements based on precise motion transformation, an effective method for optical manipulation that overcomes the important obstacles such as small optical trapping forces, friction, and the viscosity of fluids is required.
View Article and Find Full Text PDFIn this paper, a direct-detection laser radar system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45 ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. With both the GAPD and the TDC functioning multistop acquisition, the system operates in a multihit mode.
View Article and Find Full Text PDFA cavity-dumped 2.70 microm erbium laser with a frustrated total internal reflection (FTIR) shutter was investigated and compared with a Q-switched erbium laser using the FTIR shutter. The Q-switched and the cavity-dumped 2.
View Article and Find Full Text PDFA doubly shifted Raman laser using CH(4) gas has been developed for 2.8 microm generation, pumped by a Nd:YAG laser with 65.5 mJ at 17 ns.
View Article and Find Full Text PDFWe report on a novel compact interferometery system for measuring parasitic motions of a precision stage. It is a combination of a Michelson interferometer with an auto-collimator, of which full physical dimension is mere 70 mm x80 mm x35 mm (WxLxH) including optical components, photo-detectors, and electronic circuits. Since the beams, which measure displacement and angle, can be directed at the same position on the moving mirror, the system is applicable for testing small nano-stages where commercial interferometers are not able to be used.
View Article and Find Full Text PDFA simultaneous volumetric thickness-profile measurement method based on an acousto-optic tunable filter for transparent film deposited upon pattern structures is described. The nondestructive thickness profilometer prevents the destruction of samples such as one encounters in using a scanning-electron microscope and provides good accuracy. The information on the volumetric thickness profile is obtained through least-squares fitting with a phase model, ø(model)(k)=2kh+? (k, d)+(offset) , which has three unknowns: surface profile h, thickness d, and an indeterminate initial phase offset.
View Article and Find Full Text PDFWe report the efficient Raman laser system with the wavelength of 1.54 microm from a passively Q-switched Nd:YAG laser with high-pressure methane gas. It has been known that the stimulated Brillouin scattering (SBS) prevents the Raman conversion.
View Article and Find Full Text PDFWe have found that it is possible to preserve the temporal waveform of the reflected wave generated from stimulated Brillouin scattering (SBS) by using a prepulse technique. The waveform of the SBS wave usually shows a steep rising edge in the ordinary SBS process. It has been found that the waveform of the reflected wave depends on both the prepulse energy and the time delay between the main pulse and the prepulses.
View Article and Find Full Text PDF