Publications by authors named "Hong Hui Wang"

Rapid and precise cancer subtype discrimination is essential for personalized oncology. Conventional diagnostic methods often lack sufficient accuracy and speed. Here, we introduce a multichannel fluorescence-encoded nanosystem based on erythrocyte-coated polydopamine nanoparticles (PDA@EM), functionalized with multiple resurfaced fluorescent proteins.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are increasingly being considered essential diagnostic biomarkers and therapeutic targets for multiple diseases. In recent years, researchers have emphasized the need to develop probes that can harness extracellular miRNAs as input signals for disease diagnostics. In this study, we introduce a novel miRNA-responsive biosensor (miR-RBS) designed to achieve highly sensitive and specific detection of miRNAs, with a particular focus on targeted organ-specific visualization.

View Article and Find Full Text PDF

The development of synthetic molecular tools responsive to biological cues is crucial for advancing targeted cellular regulation. A significant challenge is the regulation of cellular processes in response to gaseous signaling molecules such as hydrogen sulfide (HS). To address this, we present the design of Gas signaling molecule-Responsive Artificial DNAzyme-based Switches (GRAS) to manipulate cellular functions via HS-sensitive synthetic DNAzymes.

View Article and Find Full Text PDF
Article Synopsis
  • Bioinspired molecular engineering is paving the way for new therapeutics by improving drug efficacy, specificity, and safety through the use of disease-associated biomarkers.
  • The review highlights the evolution from traditional open-loop systems, which need external input, to closed-loop feedback systems that autonomously react to disease markers.
  • Various innovative approaches like smart drug delivery platforms and synthetic receptor therapies are discussed, along with the challenges and future potential of bioinspired artificial systems in enhancing precision medicine.
View Article and Find Full Text PDF

While epidermal growth factor (EGF) shows promise in addressing the clinical manifestations of intestinal ulcerative diseases by activating the EGF receptor (EGFR)-mediated cell signaling, its clinical application is hampered by poor protein hydrolytic stability, low thermostability, and difficulty in modification. The development of a novel EGFR agonist for ulcerative colitis remains an urgent need, necessitating innovative solutions to overcome the limitations of current therapies via recombinant EGF protein. Herein, we introduce a novel DNA agonist for EGFR, Dimer-YL, which employs a bivalent aptamer to induce stable receptor dimerization, thereby activating the EGFR signaling and related cell behaviors.

View Article and Find Full Text PDF

Pectin, a natural polysaccharide, holds versatile applications in food and pharmaceuticals. However, there is a need for further exploration into extracting novel functional fractions and characterizing them thoroughly. In this study, a sequential extraction approach was used to obtain three distinct lemon pectin (LP) fractions from lemon peels (Citrus Eureka): LP extracted with sodium acetate (LP-SA), LP extracted with ethylenediaminetetraacetic acid (LP-EDTA), and LP extracted with sodium carbonate and sodium borohydride (LP-SS).

View Article and Find Full Text PDF

Synthetic signaling receptors enable programmable cellular responses coupling with customized inputs. However, engineering a designer force-sensing receptor to rewire mechanotransduction remains largely unexplored. Herein, we introduce nongenetically engineered artificial mechanoreceptors (AMRs) capable of reprogramming non-mechanoresponsive receptor tyrosine kinases (RTKs) to sense user-defined force cues, enabling de novo-designed mechanotransduction.

View Article and Find Full Text PDF

Neural progenitor cells (NPCs) are essential for in vitro drug screening and cell-based therapies for brain-related disorders, necessitating well-defined and reproducible culture systems. Current strategies employing protein growth factors pose challenges in terms of both reproducibility and cost. In this study, we developed a novel DNA-based modulator to regulate FGFR signaling in NPCs, thereby facilitating the long-term maintenance of stemness and promoting neurogenesis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have emerged as promising diagnostic biomarkers and therapeutic targets in various diseases. However, there is currently a lack of molecular strategies that can effectively use disease-associated extracellular miRNAs as input signals to drive therapeutic functions. Herein, we present a modular and programmable miRNA-responsive chimeric DNA receptor (miRNA-CDR) capable of biomarker-driven therapy.

View Article and Find Full Text PDF

The reprogramming of cell signaling and behavior through the artificial control of cell surface receptor oligomerization shows great promise in biomedical research and cell-based therapy. However, it remains challenging to achieve combinatorial recognition in a complicated environment and logical regulation of receptors for desirable cellular behavior. Herein, we develop a logic-gated DNA nanodevice with responsiveness to multiple environmental inputs for logically controlled assembly of heterogeneous receptors to modulate signaling.

View Article and Find Full Text PDF

Glucose-stimulated insulin secretion of pancreatic β cells is essential in maintaining glucose homeostasis. Recent evidence suggests that the Nephrin-mediated intercellular junction between β cells is implicated in the regulation of insulin secretion. However, the underlying mechanisms are only partially characterized.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies two key pathways for arsenic fixation in paddy soils driven by microbial activities: an indirect process involving microbial iron oxidation and a direct process involving microbial arsenic oxidation.
  • * It discusses the role of nitrogen speciation and distribution in these microbial processes, highlights recent advancements in microbial remediation techniques, and suggests future directions for controlling arsenic pollution in rice cultivation.
View Article and Find Full Text PDF

Receptor oligomerization is a highly complex molecular process that modulates divergent cell signaling. However, there is a lack of molecular tools for systematically interrogating how receptor oligomerization governs the signaling response. Here, we developed a DNA origami-templated aptamer nanoarray (DOTA) that enables precise programming of the oligomerization of receptor tyrosine kinases (RTK) with defined valency, distribution, and stoichiometry at the ligand-receptor interface.

View Article and Find Full Text PDF
Article Synopsis
  • A new method in immunotherapy is being developed to effectively direct T-cells to attack tumors by smartly activating them when needed.* -
  • Researchers created a hybrid molecular platform that combines DNA and protein to enhance T-cell targeting by using programmable DNA nanoassemblies.* -
  • By allowing T-cells to recognize multiple cancer cell antigens, the system improves tumor destruction both in lab experiments and living organisms, showcasing a flexible approach for future treatments.*
View Article and Find Full Text PDF
Article Synopsis
  • * The review highlights advancements in designing DNA nanorobots with specific functions, including their use for sensing, drug delivery, and influencing cellular behavior.
  • * It also addresses the existing challenges and future prospects of DNA nanorobotics in biomedical applications, with hopes that these innovations will enhance precision medicine.
View Article and Find Full Text PDF

Synthetic molecular robots can execute sophisticated molecular tasks at nanometer resolution. However, a molecular robot capable of controlling cellular behavior remains unexplored. Herein, we report a self-propelled DNA robot operating on the cell membrane to control the migration of a cell.

View Article and Find Full Text PDF

Objectives: RAB14 is a member of small GTPase RAB family which localizes at the endoplasmic reticulum (ER), Golgi apparatus and endosomal compartments. RAB14 acts as molecular switches that shift between a GDP-bound inactive state and a GTP-bound active state and regulates circulation of vesicles between the Golgi and endosomal compartments. In present study, we investigated the roles of RAB14 during oocyte meiotic maturation.

View Article and Find Full Text PDF

Precise delivery of therapeutic protein drugs that specifically modulate desired cellular responses is critical in clinical practice. However, the spatiotemporal regulation of protein drugs release to manipulate the target cell population in vivo remains a huge challenge. Herein, we have rationally developed an injectable and Near-infrared (NIR) light-responsive MXene-hydrogel composed of TiC, agarose, and protein that enables flexibly and precisely control the release profile of protein drugs to modulate cellular behaviors with high spatiotemporal precision remotely.

View Article and Find Full Text PDF

Tumor angiogenesis plays a crucial role in colorectal cancer development. Dysregulation of the receptor for the advanced glycation end-products (RAGE) transmembrane signaling mediates inflammation, resulting in various cancers. However, the mechanism of the RAGE signaling pathway in modulating development of colorectal cancer has not been explored.

View Article and Find Full Text PDF

Selective modulation of ligand-receptor interaction is essential in targeted therapy. In this study, we design an intelligent "scan and unlock" DNA automaton (SUDA) system to equip a native protein-ligand with cell-identity recognition and receptor-mediated signaling in a cell-type-specific manner. Using embedded DNA-based chemical reaction networks (CRNs) on the cell surface, SUDA scans and evaluates molecular profiles of cell-surface proteins via Boolean logic circuits.

View Article and Find Full Text PDF

Protein regulator of cytokinesis 1 (PRC1) is a microtubule bundling protein that is involved in the regulation of the central spindle bundle and spindle orientation during mitosis. However, the functions of PRC1 during meiosis have rarely been studied. In this study, we explored the roles of PRC1 during meiosis using an oocyte model.

View Article and Find Full Text PDF

Lipid transferase-catalyzed protein lipidation plays critical roles in many physiological processes and it has been an increasingly attractive therapeutic target from cancer to neurodegeneration, while sensitive detection of lipid transferase activity in biological samples remains challenging. Here, we presented an AuNP-based colorimetric method with dual-product synergistically enhanced sensitivity for convenient detection of lipid transferase activity. -myristoyltransferase 1 (HsNMT1), a key lipid transferase, was selected as the model.

View Article and Find Full Text PDF

Neurotransmitters are essential chemical mediators for neuronal communication in variable neuromodulations. However, the progress of neuroscience is hampered by the shortage of suitable sensors to track neurotransmitters with high spatial and temporal resolution. Here, we introduce a self-assembled DNA-nanoprism fluorescent probe capable of nongenetically engineering the cell surface for ultrasensitive imaging of the neurotransmitter release at a single live-cell level.

View Article and Find Full Text PDF

Correction for 'Electrochemically shape-controlled synthesis of great stellated dodecahedral Au nanocrystals with high-index facets for nitrogen reduction to ammonia' by Yu-Chen Jiang et al., Chem. Commun.

View Article and Find Full Text PDF

Au great stellated dodecahedra (GSD), one of the Kepler-Poinsot solids, are synthesized by an electrochemical double-step potential method in a choline chloride-urea based deep eutectic solvent. The as-synthesized Au GSD are bound by high-index {331} facets and exhibit excellent electrocatalytic performance for the nitrogen reduction reaction with a high NH3 yield rate (49.96 μg h-1 cm-2) and faradaic efficiency (28.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7igmg1i31f8pikanua1v0q4v3cfgb6e9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once