Publications by authors named "Honess R"

To investigate the mechanism of kinetic action and substrate recognition of varicella-zoster virus (VZV) thymidine kinase (TK), we designed and isolated a site-directed mutant VZV TK which has double amino acid substitutions, 136threonine to leucine and 137isoleucine to leucine (SDM TK). This mutant was designed to alter the substrate-binding site of the VZV TK to duplicate that of the herpes simplex virus type 2 enzyme. Kinetic studies of the activity of wild-type TK indicated that the binding order of ATP and thymidine is random and that wild-type VZV TK possessed high thymidylate kinase (TM-K) activity.

View Article and Find Full Text PDF

The mechanism of the inhibitory action of 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl) uracil triphosphate (BV-araUTP) on DNA synthesis by Escherichia coli DNA polymerase I Klenow fragment was studied. Acting as a chain terminator, BV-araUTP inhibited DNA synthesis by Klenow fragment more effectively than 2',3'-dideoxythymidine triphosphate (ddTTP). However, the incorporation sites of BV-araU monophosphate were restricted at consecutive dTMP sequence whereas ddTMP was incorporated at every dTMP site.

View Article and Find Full Text PDF

Herpesvirus saimiri (HSV) is a T-lymphotropic tumor virus that causes fulminant lymphomas and leukemias in various New World primates other than its natural host, the squirrel monkey (Saimiri sciureus). In the course of completing the nucleotide sequence of its genome, we identified an open reading frame of 363 nucleotides, designated HVS-15, that has no detectable homology to any other viral sequences to date. HVS-15 encodes a 121-amino-acid protein which shows significant similarities to human CD59, a phosphatidyl-inositol-glycan-anchored glycoprotein involved in T-cell activation and restriction of complement-mediated lysis.

View Article and Find Full Text PDF

The nucleotide sequence of a 12 kbp HindIII fragment (HindIII C) from the right end of the unique component of the genome of human herpesvirus 6 (HHV-6) (strain U1102) was determined. The sequence has a mean G + C content of 42% and contains approximately 28 copies of a tandemly repeated 104 to 107 bp element, which, with a single exception, contain a cleavage site for KpnI (the KpnI repeats). Each of these elements contains potential binding sites for transcription factors NF-kappa B and AP2.

View Article and Find Full Text PDF

We present an analysis of 43,658 bp of contiguous nucleotide sequence comprising the right terminal region (conventional orientation) of the unique protein-coding component (L-DNA) of the herpesvirus saimiri (HVS) genome. Within this region lie the genes encoding the 160-kDa virion protein, which is homologous to the 140-kDa membrane antigen of Epstein-Barr virus (EBV), thymidylate synthase (TS), and the immediate-early (IE) 52-kDa protein which is homologous to the EBV BMLF1 product. The 160-kDa gene of HVS lies at the right terminus of HVS L-DNA, its homologue in EBV occurring at the left terminus of the EBV genome (conventional orientation).

View Article and Find Full Text PDF

To understand the relationship between the primary structure and function of varicella-zoster virus thymidine kinase (VZV TK; EC 2.7.1.

View Article and Find Full Text PDF

Herpesvirus saimiri (HVS) is a T-lymphotropic gammaherpesvirus which establishes asymptomatic infections in its natural host the squirrel monkey (Saimiri sciureus), but which causes fatal lymphoproliferative diseases in other New World primates. Sequencing studies show HVS is closely related to the human B-lymphotropic gammaherpesvirus Epstein-Barr virus (EBV). However, despite the general colinearity between the genomes of HVS and EBV, HVS contains genes not found in EBV or in the genomes of any of the other sequenced herpesviruses.

View Article and Find Full Text PDF

Sequencing studies have indicated that the unique component of the human herpesvirus 6 (HHV-6) genome and the unique long segment of the human cytomegalovirus genome are genetically colinear. Of particular interest is the identification of a region of local CpG dinucleotide suppression in the genome of HHV-6, a feature conserved in the genomes of human cytomegalovirus, murine cytomegalovirus, and simian cytomegalovirus, and a characteristic of the major immediate-early loci of these viruses. Adjacent to this region in HHV-6 are approximately 30 copies of a 103- to 108-bp sequence element, which contains consensus binding sites for the transcription factors AP2 and NF kappa B, in addition to a single KpnI recognition site.

View Article and Find Full Text PDF

Human herpesvirus type-6 (HHV-6) is a recently isolated herpesvirus which is highly prevalent in adult populations around the world. HHV-6 was first isolated from the peripheral blood of six individuals with lymphoproliferative disorders, two of whom were also infected with human immunodeficiency virus. HHV-6, in common with other herpesviruses, transactivates the HIV long terminal repeat linked to reporter genes and has in addition been shown to accelerate HIV gene expression and CD4 cell death in cultures co-infected with both viruses.

View Article and Find Full Text PDF

We have reported previously the detection of two stable immediate-early (IE) transcripts that accumulate in cycloheximide-treated cells infected with herpesvirus saimiri (HVS). These are the 1.6-kb mRNA from the 52-kDa gene (which is homologous to the BSLF2-BMLF1 gene of Epstein-Barr virus) and the 1.

View Article and Find Full Text PDF

We have applied the polymerase chain reaction (PCR) technique to analyse mutations in the thymidine kinase (TK) gene of varicella-zoster virus (VZV) associated with resistance to the 5-bromovinyl (BVaraU) and 5-propynyl (PYaraU) analogues of arabinofuranosyl deoxyuridine. The results from this study allow three clear conclusions to be drawn. Firstly, the technique clearly shows that populations of VZV derived from plaque purification were truly clonal only when the plaques were initiated from cell-free virus (representing a tiny fraction of infectious virus) and plaques initiated by infected cells contained a mixture of variants.

View Article and Find Full Text PDF

More than 50 fragments resulting from complete digestion of the DNA of human herpesvirus 6 (HHV-6, strain U1102) with BamHI, EcoRI, HindIII, KpnI, NruI, SalI or SmaI have been isolated as clones in M13, plasmid, cosmid and lambda vectors. Using these clones, maps have been constructed for the fragments produced by nine restriction enzymes from unit-length virus genomes and from their concatemeric precursors. The unit-length genome is a linear, double-stranded molecule of 161.

View Article and Find Full Text PDF

Transcripts from two immediate early (IE) genes have been identified in cells infected with the gamma herpesvirus, herpesvirus saimiri. One is a 1.3 kb RNA transcribed from the HindIII-G fragment of virus DNA (IE-G), the other is a 1.

View Article and Find Full Text PDF

During productive infections of cells with the gammaherpesvirus, herpesvirus saimiri (HVS), a polyadenylated RNA of 2.2-2.4 kb accumulates to form a large fraction of virus-specified RNA.

View Article and Find Full Text PDF

A sequence of 21,858 base pairs from the genome of human herpesvirus 6 (HHV-6) strain U1102 is presented. The sequence has a mean composition of 41% G + C, and the observed frequency of CpG dinucleotides is close to that predicted from this mononucleotide composition. The sequence contains 17 complete open reading frames (ORFs) and part of another at the 5' end of the sequence.

View Article and Find Full Text PDF

We present the nucleotide sequence of a region from the genome of the A + T-rich gammaherpesvirus, herpesvirus saimiri (HVS), which includes the coding sequences for the viral thymidine kinase (TK) gene. The organization of genes in this region resembles the homologous region of the Epstein-Barr virus (EBV) genome and is very compact, using overlapping coding sequences and with nucleotides shared by initiation and termination codons of neighbouring reading frames. The HVS TK is predicted to contain a 527 residue polypeptide with the first part of the presumptive nucleotide-binding site [(L, I, V)(F, Y)(I, L)(D, E)(G)(X)(X)(G)(L, I, V, M)(G)(K)(T, S)(T, S)] located at residues 212 to 224.

View Article and Find Full Text PDF

The DNA sequences of genomes from G + C-rich and A + T-rich lymphotropic herpesviruses [i.e. gammaherpesviruses; Epstein-Barr virus and herpesvirus saimiri (HVS)] are deficient in CpG dinucleotides and contain an excess of TpG and CpA dinucleotides relative to frequencies predicted from their mononucleotide compositions.

View Article and Find Full Text PDF

We present the nucleotide sequence of the glycoprotein H (gH) gene of herpesvirus saimiri (HVS), a representative of the T lymphotropic herpesviruses of New World monkeys, and compare the predicted amino acid sequence with sequences of homologous proteins from four human herpesviruses. The HVS gH gene is located within a block of genes encoding products conserved in all herpesvirus subgroups as represented by the human herpesviruses herpes simplex virus, varicella-zoster virus, cytomegalovirus and Epstein-Barr virus. In agreement with the biological grouping of HVS as a lymphotropic gammaherpesvirus, its gH amino acid sequence shows greatest similarity to that of the B lymphotropic Epstein-Barr virus, although the nucleotide sequences of their respective gH genes show little similarity given different G + C compositions of 31% and 54%.

View Article and Find Full Text PDF

We present a sequence of 2,220 nucleotides from a region of the genome of herpesvirus saimiri (HVS) which includes the coding and putative regulatory sequences for the 52-kilodalton (kDa) immediate-early (IE) phosphoprotein of the virus. The amino acid sequence predicted for this protein shows it to be homologous to the EB2 transcriptional effector encoded by the BMLF1 open reading frame of Epstein-Barr virus (EBV), the IE 68-kDa protein of varicella-zoster virus, and the IE 63-kDa (alpha 27) protein of herpes simplex virus (HSV). By measuring the function of the HVS 52-kDa-protein gene in transient expression assays, we also showed that it can substitute with comparable efficiency for the EB2 product of EBV in the EB1-dependent activation of the EBV DR promoter.

View Article and Find Full Text PDF

By analyses of short DNA sequences, we have deduced the overall arrangement of genes in the (A + T)-rich coding sequences of herpesvirus saimiri (HVS) relative to the arrangements of homologous genes in the (G + C)-rich coding sequences of the Epstein-Barr virus (EBV) genome and the (A + T)-rich sequences of the varicella-zoster virus (VZV) genome. Fragments of HVS DNA from 13 separate sites within the 111 kilobase pairs of the light DNA coding sequences of the genome were subcloned into M13 vectors, and sequences of up to 350 bases were determined from each of these sites. Amino acid sequences predicted for fragments of open reading frames defined by these sequences were compared with a library of the protein sequences of major open reading frames predicted from the complete DNA sequences of VZV and EBV.

View Article and Find Full Text PDF