Publications by authors named "Hone J"

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.

View Article and Find Full Text PDF

Twisted hexagonal boron nitride (thBN) exhibits ferroelectricity due to moiré superlattices with AB/BA domains. These domains possess electric dipoles, leading to a periodic electrostatic potential that can be imprinted onto other materials placed in its proximity. Here we demonstrate the remote imprinting of moiré patterns from thBN onto monolayer MoSe and investigate the changes in the exciton properties.

View Article and Find Full Text PDF

Nanoribbons (NRs) of atomic layer transition metal dichalcogenides (TMDs) can boost the rapidly emerging field of quantum materials owing to their width-dependent phases and electronic properties. However, the controllable downscaling of width by direct growth and the underlying mechanism remain elusive. Here, we demonstrate the vapor-liquid-solid growth of single crystal of single layer NRs of a series of TMDs (MeX: Me = Mo, W; X = S, Se) under chalcogen vapor atmosphere, seeded by pre-deposited and respective transition metal-alloyed nanoparticles that also control the NR width.

View Article and Find Full Text PDF

Two-dimensional semiconductors exhibit pronounced many-body effects and intense optical responses due to strong Coulombic interactions. Consequently, subtle differences in photoexcitation conditions can strongly influence how the material dissipates energy during thermalization. Here, using multiple excitation spectroscopies, we show that a distinct thermalization pathway emerges at elevated excitation energies, enhancing the formation of trions and charged biexcitons in single-layer WSe by up to 2× and 5× , respectively.

View Article and Find Full Text PDF

Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering.

View Article and Find Full Text PDF

Radiofrequency (RF) catheter ablation is a well-established therapeutic approach for treating arrhythmias, where lesion size and safety are critical for efficacy. This study explored the impact of varying irrigation flow rates on lesion characteristics using the TactiFlex™ SE Ablation Catheter (TF) in an ex vivo porcine heart model, focusing on the size and safety outcomes associated with low versus standard flow rates. Myocardial slabs from porcine hearts were subjected to ablation using two types of irrigated catheters.

View Article and Find Full Text PDF

Surface plasmon polaritons (SPPs) provide a window into the nano-optical, electrodynamic response of their host material and its dielectric environment. Graphene/α-RuCl serves as an ideal model system for imaging SPPs since the large work function difference between these two layers facilitates charge transfer that hole dopes graphene with ∼ 10 cm free carriers. In this work, we study the emergent THz response of graphene/α-RuCl heterostructures using our home-built cryogenic scanning near-field optical microscope.

View Article and Find Full Text PDF
Article Synopsis
  • Participants from 22 research groups utilized various methods, including periodic DFT-D methods, machine learning models, and empirical force fields to assess crystal structures generated from standardized sets.
  • The findings indicate that DFT-D methods generally aligned well with experimental results, while one machine learning approach showed significant promise; however, the need for more efficient research methods was emphasized due to resource consumption.
View Article and Find Full Text PDF

A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern.

View Article and Find Full Text PDF

van der Waals (vdW) structures host a broad range of physical phenomena. New opportunities arise if different functional layers are remotely modulated or coupled in a device structure. Here we demonstrate the in situ coherent modulation of moiré excitons and correlated Mott insulators in transition metal dichalcogenide (TMD) moirés with on-chip terahertz (THz) waves.

View Article and Find Full Text PDF
Article Synopsis
  • Robust electrical contacts are essential for the effective use of monolayer 2D semiconductors, particularly semiconducting transition metal dichalcogenides (s-TMDs), in electronics.
  • This study investigates the use of bismuth semimetal contacts with monolayer MoSe, focusing on minimizing experimental uncertainties and measuring important parameters like specific resistivity and transfer length.
  • Findings reveal that the resistivity of MoSe at the contacts increases due to charge transfer, but there is a discrepancy between theoretical models and experimental measurements, indicating that new theoretical methods are needed.
View Article and Find Full Text PDF

Assays that measure morphology, proliferation, motility, deformability, and migration are used to study the invasiveness of cancer cells. However, native invasive potential of cells may be hidden from these contextual metrics because they depend on culture conditions. We created a micropatterned chip that mimics the native environmental conditions, quantifies the invasive potential of tumor cells, and improves our understanding of the malignancy signatures.

View Article and Find Full Text PDF

Atomically thin semiconductor heterostructures provide a two-dimensional (2D) device platform for creating high densities of cold, controllable excitons. Interlayer excitons (IEs), bound electrons and holes localized to separate 2D quantum well layers, have permanent out-of-plane dipole moments and long lifetimes, allowing their spatial distribution to be tuned on demand. Here, we employ electrostatic gates to trap IEs and control their density.

View Article and Find Full Text PDF

Two-dimensional semiconductors, such as transition metal dichalcogenides, have demonstrated tremendous promise for the development of highly tunable quantum devices. Realizing this potential requires low-resistance electrical contacts that perform well at low temperatures and low densities where quantum properties are relevant. Here we present a new device architecture for two-dimensional semiconductors that utilizes a charge-transfer layer to achieve large hole doping in the contact region, and implement this technique to measure the magnetotransport properties of high-purity monolayer WSe.

View Article and Find Full Text PDF

Establishing reliable electrical contacts to atomically thin materials is a prerequisite for both fundamental studies and applications yet remains a challenge. In particular, the development of contact techniques for air-sensitive monolayers has lagged behind, despite their unique properties and significant potential for applications. Here, we present a robust method to create contacts to device layers encapsulated within hexagonal boron nitride (hBN).

View Article and Find Full Text PDF

Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility and quality. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD.

View Article and Find Full Text PDF

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength.

View Article and Find Full Text PDF

Manipulating the nanostructure of materials is critical for numerous applications in electronics, magnetics, and photonics. However, conventional methods such as lithography and laser writing require cleanroom facilities or leave residue. We describe an approach to creating atomically sharp line defects in hexagonal boron nitride (hBN) at room temperature by direct optical phonon excitation with a mid-infrared pulsed laser from free space.

View Article and Find Full Text PDF

We report experimental and theoretical studies of MoTe-MoSe heterobilayers with rigid moiré superlattices controlled by the twist angle. Using an effective continuum model that combines resonant interlayer electron tunneling with stacking-dependent moiré potentials, we identify the nature of moiré excitons and the dependence of their energies, oscillator strengths, and Landé -factors on the twist angle. Within the same framework, we interpret distinct signatures of bound complexes among electrons and moiré excitons in nearly collinear heterostacks.

View Article and Find Full Text PDF

Atomic defects in two-dimensional (2D) materials impact electronic and optoelectronic properties, such as doping and single photon emission. An understanding of defect-property relationships is essential for optimizing material performance. However, progress in understanding these critical relationships is hindered by a lack of straightforward approaches for accurate, precise, and reliable defect quantification on the nanoscale, especially for insulating materials.

View Article and Find Full Text PDF

Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design.

View Article and Find Full Text PDF

Employing flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500  nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.

View Article and Find Full Text PDF

Since the seminal work on MoS, photoexcitation in atomically thin transition metal dichalcogenides (TMDCs) has been assumed to result in excitons, with binding energies order of magnitude larger than thermal energy at room temperature. Here, we reexamine this foundational assumption and show that photoexcitation of TMDC monolayers can result in a substantial population of free charges. Performing ultrafast terahertz spectroscopy on large-area, single-crystal TMDC monolayers, we find that up to ~10% of excitons spontaneously dissociate into charge carriers with lifetimes exceeding 0.

View Article and Find Full Text PDF