Publications by authors named "Honbo N"

Aims: We recently reported that immunosuppression with FTY720 improves cardiac function and extends longevity in Hypomorphic ApoE mice deficient in scavenger receptor Type-BI expression, also known as the HypoE/SR-BI(–/–) mouse model of diet-induced coronary atherosclerosis and myocardial infarction (MI). In this study, we tested the impact of FTY720 on cardiac dysfunction in HypoE/SR-BI(–/–) mice that survive MI and subsequently develop chronic heart failure.

Methods/results: HypoE/SR-BI(–/–) mice were bred to Mx1-Cre transgenic mice, and offspring were fed a high-fat diet (HFD) for 3.

View Article and Find Full Text PDF

Cardiovascular disease is the leading cause of death in Western countries. A major limitation of current treatments is the inability to efficiently repair or replace dead myocardium. Recently, stem cell-based therapies have been explored as an avenue to circumvent current therapeutic limitations.

View Article and Find Full Text PDF

FTY720, an analogue of sphingosine-1-phosphate, is cardioprotective during acute injury. Whether long-term FTY720 affords cardioprotection is unknown. Here, we report the effects of oral FTY720 on ischemia/reperfusion injury and in hypomorphic apoE mice deficient in SR-BI receptor expression (ApoeR61(h/h)/SRB1(-/- mice), a model of diet-induced coronary atherosclerosis and heart failure.

View Article and Find Full Text PDF

Background: We investigated the hypothesis that postconditioning by FTY720 (FTY) in isolated perfused mouse hearts is independent of the sphingosine 1-phosphate (S1P) pathway.

Material And Methods: Ex vivo hearts were exposed to postconditioning (POST) by either ischemia or FTY720. Protection against ischemia/reperfusion (IR) injury was measured by recovery of left ventricular developed pressure (LVDP) and infarct size.

View Article and Find Full Text PDF

Sphingosine kinase (SphK) exhibits two isoforms, SphK1 and SphK2. Both forms catalyze the synthesis of sphingosine 1-phosphate (S1P), a sphingolipid involved in ischemic preconditioning (IPC). Since the ratio of SphK1:SphK2 changes dramatically with aging, it is important to assess the role of SphK2 in IR injury and IPC.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling.

View Article and Find Full Text PDF

There is an increase in reactive oxygen and nitrogen species in cardiomyocytes during myocardial ischemia/reperfusion injury. This leads to oxidative DNA damage and activation of nuclear repair enzymes such as poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 activation promotes DNA repair under normal conditions.

View Article and Find Full Text PDF

The DNA-damaging agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) causes cardiomyocyte death as a result of energy loss from excessive activation of poly-(ADP) ribose polymerase-1 (PARP-1) resulting in depletion of its substrates nicotinamide adenine dinucleotide (NAD) and ATP. Previously we showed that the chemotherapeutic agent vincristine (VCR) is cardioprotective. Here we tested the hypothesis that VCR inhibits MNNG-induced PARP activation.

View Article and Find Full Text PDF

The lipid mediator sphingosine 1-phosphate (S1P) confers survival benefits in cardiomyocytes and isolated hearts subjected to oxidative stress. High-density lipoprotein (HDL) is a major carrier of S1P in the serum, but whether HDL-associated S1P directly mediates survival in a preparation composed exclusively of cardiomyocytes has not been demonstrated. Accordingly, we tested the hypothesis that signal activation and survival during simulated ischemia-reperfusion injury in response to HDL require lipoprotein-associated S1P.

View Article and Find Full Text PDF

Established doxorubicin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50%. Extensive research has been done to understand the mechanism and pathophysiology of doxorubicin cardiomyopathy, and considerable knowledge and experience has been gained.

View Article and Find Full Text PDF

Alkaline incubation of NADH results in the formation of a very potent inhibitor of lactate dehydrogenase. High resolution mass spectroscopy along with NMR characterization clearly showed that the inhibitor is derived from attachment of a glycolic acid moiety to the 4-position of the dihydronicotinamide ring of NADH. The very potent inhibitor is competitive with respect to NADH.

View Article and Find Full Text PDF

Exogenous sphingosine 1-phosphate (S1P) is an effective cardioprotectant against ischemic injury. We have investigated the hypothesis that S1P is also an important endogenous cardioprotectant released during both ischemic preconditioning (IPC) and ischemic postconditioning (IPOST). IPC of ex vivo rat hearts was instituted by two cycles of 3 min ischemia-5 min reperfusion prior to 40 min of index ischemia and then 40 min of reperfusion.

View Article and Find Full Text PDF

We examined the ability of sphingosine-1-phosphate (S1P) to desensitize extracellular signal-related kinase (ERK), a mitogen-activated protein kinase linked to antiapoptotic responses in the heart. In isolated adult mouse cardiomyocytes, S1P (10 nM-5 microM) induced ERK phosphorylation in a time- and dose-dependent manner. S1P stimulation of ERK was completely inhibited by an S1P1/3 subtype receptor antagonist (VPC23019), by a Gi protein inhibitor (pertussis toxin) and by a mitogen-activated protein kinase/ERK kinase inhibitor (PD98059).

View Article and Find Full Text PDF

Our aim was to test the hypothesis that the vinca alkaloid vincristine could prevent doxorubicin-induced cardiomyocyte death and to identify the mechanisms involved. Adult mouse cardiac myocytes were incubated for 24 h with doxorubicin, with and without concurrent vincristine. Trypan blue exclusion showed that 50-60% of myocytes treated with doxorubicin alone survived.

View Article and Find Full Text PDF

We investigated the ability of pyrroloquinoline quinone (PQQ) to confer resistance to acute oxidative stress in freshly isolated adult male rat cardiomyocytes. Fluorescence microscopy was used to detect generation of reactive oxygen species (ROS) and mitochondrial membrane potential (Deltapsi(m)) depolarization induced by hydrogen peroxide. H(2)O(2) caused substantial cell death, which was significantly reduced by preincubation with PQQ.

View Article and Find Full Text PDF

Sphingosine 1-phosphate (S1P) is a biologically active lysophospholipid that serves as a key regulator of cellular differentiation and survival. Immune stimuli increase S1P synthesis and secretion by mast cells and platelets, implicating this molecule in tissue responses to injury and inflammation. Binding of S1P to G(i) protein-coupled receptors activates phosphatidylinositol 3-kinase and Akt in a variety of tissues.

View Article and Find Full Text PDF

Vincristine is a chemotherapeutic agent that disrupts microtubules. We noted that paclitaxel (Taxol), which stabilizes microtubules, protected cultured adult mouse cardiac myocytes from oxidative stress induced by H(2)O(2). We hypothesized that vincristine, which disrupts microtubules, should have the opposite effect.

View Article and Find Full Text PDF

Cardiac fibroblasts are critical for the maintenance of extracellular matrix deposition and turnover in the normal heart and are key mediators of inflammatory and fibrotic myocardial remodeling in the injured and failing heart. Sphingosine kinase (SphK) activation is a well-recognized determinant of cell fate in cardiac myocytes and other cells, but SphK responses have not previously been studied in cardiac fibroblasts. Initially we found that total SphK activity is over 10-fold higher in cardiac fibroblasts than in adult mouse cardiac myocytes.

View Article and Find Full Text PDF

Objectives: Activation of sphingosine kinase (SphK), which has two known isoforms, is responsible for the synthesis of sphingosine 1-phosphate (S1P), a cell survival factor. We tested the following hypotheses: 1] cardiac myocytes null for the SphK1 gene are more vulnerable to the stress of hypoxia+glucose deprivation; 2] the monoganglioside GM-1, which activates SphK via protein kinase C epsilon, is ineffective in SphK1-null myocytes; 3] S1P generated by SphK activation requires cellular export to be cardioprotective.

Methods: We cultured adult mouse cardiac myocytes from wildtype and SphK1-null mice (deletion of exons 3-6) and measured cell viability by trypan blue exclusion.

View Article and Find Full Text PDF

Unlabelled: The goal of this study was to determine if an ischemic preconditioning (IPC) protocol improved post-ischemic functional recovery of female mouse hearts. A previous study found that IPC did not occur in hearts from 10-week-old females. We studied Langendorff-perfused hearts from both 10- and 18-week-old mice (males and females).

View Article and Find Full Text PDF

Enhanced synthesis of a specific matrix metalloproteinase, MMP-2, has been demonstrated in experimental models of ventricular failure and in cardiac extracts from patients with ischaemic cardiomyopathy. Cultured neonatal rat cardiac fibroblasts and myocytes were used to analyse the determinants of MMP-2 synthesis, including the effects of hypoxia. Culture of rat cardiac fibroblasts for 24 h in 1% oxygen enhanced MMP-2 synthesis by more than 5-fold and augmented the MMP-2 synthetic responses of these cells to endothelin-1, angiotensin II and interleukin 1beta.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) protects neonatal rat cardiac myocytes from hypoxic damage through unknown signaling pathways. We tested the hypothesis that S1P-induced cardioprotection requires activation by the epsilon-isoform of protein kinase C (PKC epsilon) by subjecting hearts isolated from PKC epsilon knockout mice and wild-type mice to 20 min of global ischemia and 30 min of reperfusion. Pretreatment with a 2-min infusion of 10 nM S1P improved recovery of left ventricular developed pressure (LVDP) in both wild-type and PKC epsilon knockout hearts and reduced the rise in LV end-diastolic pressure (LVEDP) and creatine kinase (CK) release.

View Article and Find Full Text PDF

The lysophospholipids sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) stimulate cellular proliferation and affect numerous cellular functions by signaling through G protein-coupled endothelial differentiation gene-encoded (Edg) receptors. S1P and LPA also act as survival factors in many cell types, but have not previously been studied in cardiac myocytes. We incubated neonatal rat cardiac myocytes either in room air/1% CO2 (normoxia) or in an atmosphere of 99% N2/1%CO2 (hypoxia) at 37 degrees C for 18-20 h in the absence of glucose.

View Article and Find Full Text PDF

Although mouse models have been increasingly used for studies of cardiac pathophysiology, there is little information regarding cultured murine cardiac myocytes. Accordingly, we have developed a cell culture model of neonatal mouse cardiac myocytes by modifying a protocol used to prepare neonatal rat myocytes. The principal change is the substitution of cytosine arabinoside for bromodeoxyuridine to prevent fibroblast proliferation.

View Article and Find Full Text PDF

After myocardial ischemia, circulating levels of the mitogen endothelin-1 (ET-1) increase. The effects of ET-1 on cardiac fibroblasts are poorly characterized. Therefore we examined the influence of ET-1 on cardiac fibroblast proliferation with a view to elucidating the signal transduction mechanisms underlying this effect.

View Article and Find Full Text PDF