The spherical aberration induced by refractive-index mismatch results in the degradation on the quality of sectioning images in conventional confocal laser scanning microscope (CLSM). In this research, we have derived the theory of image formation in a Zeeman laser scanning confocal microscope (ZLSCM) and conducted experiments in order to verify the ability of reducing spherical aberration in ZLSCM. A Zeeman laser is used as the light source and produces the linearly polarized photon-pairs (LPPP) laser beam.
View Article and Find Full Text PDFWe discuss a novel approach for numerical wave-front reconstruction which utilizes arbitrary phase step digital holography. Our experimental results demonstrate that only two digital holograms and a simple estimation procedure are required for twin-image suppression, and for numerical reconstruction. One advantage of this approach is its simplicity.
View Article and Find Full Text PDFA new method to record an image through a thick dynamic phase distorting medium by using a photorefractive LiNbO3 crystal is demonstrated. The method uses only one beam of light, the object light. By making use of the photorefractive fanning effect, gratings are formed in the LiNbO3 crystal through the interference between the object light and its own fanning light.
View Article and Find Full Text PDFWe develop an angular-interrogation attenuated total reflection (ATR) metrology system for three different plasmonic sensors, namely, a conventional surface plasmon resonance (SPR) device, a coupled-waveguide SPR device, and a nanoparticle-enhanced SPR device. The proposed metrology system is capable of measuring the reflectivity spectra of the transverse magnetic mode and the transverse electric mode simultaneously. Through the optimal control of the fabrication process and use of sophisticated system instrumentation, the experimental results confirm that the developed ATR system is capable of measuring the resonant angle with an angular accuracy of 10(-4) deg.
View Article and Find Full Text PDFA novel diffused photon-pair density wave (DPPDW) composed of correlated polarized photon pairs at different temporal frequencies and orthogonal linearly polarized states is proposed. A theory of DPPDWs is developed. A DPPDW selected by coherence gating and polarization gating that satisfies the diffusion equation has been verified experimentally.
View Article and Find Full Text PDFWe propose a new way to record images in a photorefractive LiNbO3 crystal. This method involves only a single object light without any reference light. We believe that the recording is attained by fanning holograms that result from interference between the object light and its scattered light.
View Article and Find Full Text PDF