Urban functional fragmentation plays an important role in assessing Nitrogen Dioxide (NO) emissions and variations. While the mediated impact of anthropogenic-emission restriction has not been comprehensively discussed, the lockdown response to the novel coronavirus disease 2019 (COVID-19) provides an unprecedented opportunity to meet this goal. This study proposes a new idea to explore the effects of urban functional fragmentation on NO variation with anthropogenic-emission restriction in China.
View Article and Find Full Text PDFThe World Health Organization considered the wide spread of COVID-19 over the world as a pandemic. There is still a lack of understanding of its origin, transmission, and treatment methods. Understanding the influencing factors of COVID-19 can help mitigate its spread, but little research on the spatial factors has been conducted.
View Article and Find Full Text PDFBackground/purpose: The aim of this study was to test the hypothesis that mechanical ventilation (MV) during cancer surgery induces lung stroma/tissue milieu changes, creating a favorable microenvironment for postoperative lung metastatic tumor establishment.
Materials And Methods: In Protocol A, female BALB/c mice were divided into an MV group and a control (no MV) group, both of which were anesthetized and subjected to intravenous injection of green fluorescent protein (GFP)-labeled mouse mammary carcinoma cell line (4T1) cells. After 24 h, the lung tissue was removed and the number of GFP-labeled 4T1 cells was calculated.