Publications by authors named "Homolya L"

Background: Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs).

Methods: Proliferation and neurite outgrowth were measured by live cell imaging, and gene expression levels related to neuronal identity were analyzed by RT-QPCR and immunocytochemistry during differentiation into hippocampal dentate gyrus granule cells following treatment of low- and high-dose antipsychotics (haloperidol, olanzapine, and risperidone).

View Article and Find Full Text PDF

Recently studied -(β-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 . Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted in significantly more efficient GP inhibitors, in silico calculations using Glide molecular docking along with unbound state DFT calculations were performed on -(β-d-glucopyranosyl)-arylimidazole-carboxamides, revealing their potential for strong GP inhibition. The syntheses of the target compounds involved the formation of an amide bond between per--acetylated β-d-glucopyranosylamine and the corresponding arylimidazole-carboxylic acids.

View Article and Find Full Text PDF

Background: Schizophrenia (SCZ) is a severe neuropsychiatric disorder of complex, poorly understood etiology, associated with both genetic and environmental factors. De novo mutations (DNMs) represent a new source of genetic variation in SCZ, however, in most cases their biological significance remains unclear. We sought to investigate molecular disease pathways connected to DNMs in SCZ by combining human induced pluripotent stem cell (hiPSC) based disease modeling and CRISPR-based genome editing.

View Article and Find Full Text PDF

The human ABCG2 multidrug transporter plays a crucial role in the absorption and excretion of xeno- and endobiotics, contributes to cancer drug resistance and the development of gout. In this work, we have analyzed the effects of selected variants, residing in a structurally unresolved cytoplasmic region (a.a.

View Article and Find Full Text PDF

ABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive.

View Article and Find Full Text PDF

ABCG1 has been proposed to play a role in HDL-dependent cellular sterol regulation; however, details of the interaction between the transporter and its potential sterol substrates have not been revealed. In the present work, we explored the effect of numerous sterol compounds on the two isoforms of ABCG1 and ABCG4 and made efforts to identify the molecular motifs in ABCG1 that are involved in the interaction with cholesterol. The functional readouts used include ABCG1-mediated ATPase activity and ABCG1-induced apoptosis.

View Article and Find Full Text PDF

Microglia, the primary immune cells of the brain, significantly influence the fate of neurons after neural damage. Depending on the local environment, they exhibit a wide range of phenotypes, including patrolling (naïve), proinflammatory, and anti-inflammatory characteristics, which greatly affects neurotoxicity. Despite the fact that neural progenitor cells (NPCs) and hippocampal neurons represent cell populations, which play pivotal role in neural regeneration, interaction between microglia and these cell types is poorly studied.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how O-peracetylated and O-perbenzoylated glycals with different substituents react with various nucleophiles in the presence of Lewis acids.
  • - Specific nucleophiles, such as simple alcohols and chloride ions, led to the formation of allylic substituted products with distinct axial stereoselectivity.
  • - Interestingly, when benzyl thiol was used, a rearrangement occurred, producing thioglycosides, and a sugar-derived thiol generated both allylic substituted and rearranged products.
View Article and Find Full Text PDF

The primordial germ cells (PGCs) are the precursors for both the oocytes and spermatogonia. Recently, a novel culture system was established for chicken PGCs, isolated from embryonic blood. The possibility of PGC long-term cultivation issues a new advance in germ cell preservation, biotechnology, and cell biology.

View Article and Find Full Text PDF

Studies on neural development and neuronal regeneration after injury are mainly based on animal models. The establishment of pluripotent stem cell (PSC) technology, however, opened new perspectives for better understanding these processes in human models by providing unlimited cell source for hard-to-obtain human tissues. Here, we aimed at identifying the molecular factors that confine and modulate an early step of neural regeneration, the formation of neurites in human neural progenitor cells (NPCs).

View Article and Find Full Text PDF

Addition of bromine and chlorine to O-peracylated 1-CN-, COOMe- and CONH-substituted glycals was studied under ionic and radical conditions. The main or exclusive products were the corresponding 2,3-trans-diaxial (3-bromo-3-deoxy-α-d-heptopyranosylbromide)onic acid derivatives. Bromination of the O-peracetylated d-lyxo-hept-2-enopyranosononitrile and all chlorinations proved selective towards the 2-axial-3-equatorial (3-halogeno-3-deoxy-α-d-heptopyranosylhalide)onic acid derivatives.

View Article and Find Full Text PDF

Human neuronal cell cultures are essential tools for biological and preclinical studies of our nervous system. Since we have very limited access to primary human neural samples, derivation of proliferative neural progenitor cells (NPCs) from cells harvested by minimally invasive sampling is a key issue. Here we describe a "shortcut" method to establish proliferative NPC cultures directly from peripheral blood mononuclear cells (PBMCs) via interrupted reprogramming.

View Article and Find Full Text PDF

We demonstrated that the plasma membrane Ca ATPase PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells. Actin dynamics are essential for cells to move, invade and metastasize, therefore, we hypothesized that PMCA4b affected cell migration through remodeling of the actin cytoskeleton. We found that expression of PMCA4b in A375 BRAF mutant melanoma cells induced a profound change in cell shape, cell culture morphology, and displayed a polarized migratory character.

View Article and Find Full Text PDF

Several polymorphisms and mutations in the human ABCG2 multidrug transporter result in reduced plasma membrane expression and/or diminished transport function. Since ABCG2 plays a pivotal role in uric acid clearance, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body; thus, genetic alterations in may modify the absorption, distribution, excretion of potentially toxic endo- and exogenous substances.

View Article and Find Full Text PDF

Proper targeting of the urate and xenobiotic transporter ATP-binding transporter subfamily G member 2 (ABCG2) to the plasma membrane (PM) is essential for its normal function. The naturally occurring Q141K and M71V polymorphisms in ABCG2, associated with gout and hyperuricemia, affect the cellular routing of the transporter, rather than its transport function. The cellular localization of ABCG2 variants was formerly studied by immunolabeling, which provides information only on the steady-state distribution of the protein, leaving the dynamics of its cellular routing unexplored.

View Article and Find Full Text PDF

Elements of the immune system particularly that of innate immunity, play important roles beyond their traditional tasks in host defense, including manifold roles in the nervous system. Complement-mediated synaptic pruning is essential in the developing and healthy functioning brain and becomes aberrant in neurodegenerative disorders. C1q, component of the classical complement pathway, plays a central role in tagging synapses for elimination; however, the underlying molecular mechanisms and interaction partners are mostly unknown.

View Article and Find Full Text PDF

Here we describe the generation of induced pluripotent stem cell lines from each member - male proband, mother, father - of a schizophrenia case-parent trio that participated in an exome sequencing study, and 3 de novo mutations were identified in the proband. Peripheral blood mononuclear cells were obtained from all three individuals and reprogrammed using Sendai virus particles carrying the Yamanaka transgenes. These 3 iPSC lines (iPSC-SZ-HU-MO 1, iPSC-SZ-HU-FA 1, and iPSC-SZ-HU-PROB 1) represent a resource for examining the functional significance of the identified de novo mutations in the molecular pathophysiology of schizophrenia.

View Article and Find Full Text PDF

Synthesis and multiple STED imaging applications of four, red-emitting (610-670 nm), tetrazine-functionalized fluorescent probes (CBRD = Chemical Biology Research group Dye 1-4) with large Stokes-shift is presented. Present studies revealed the super-resolution microscopy applicability of the probes as demonstrated through bioorthogonal labeling scheme of cytoskeletal proteins actin and keratin-19, and mitochondrial protein TOMM20. Furthermore, super-resolved images of insulin receptors in live-cell bioorthogonal labeling schemes through a genetically encoded cyclooctynylated non-canonical amino acid are also presented.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) are promising tools to model complex neurological or psychiatric diseases, including schizophrenia. Multiple studies have compared patient-derived and healthy control NPCs derived from iPSCs in order to investigate cellular phenotypes of this disease, although the establishment, stabilization, and directed differentiation of iPSC lines are rather expensive and time-demanding. However, interrupted reprogramming by omitting the stabilization of iPSCs may allow for the generation of a plastic stage of the cells and thus provide a shortcut to derive NPSCs directly from tissue samples.

View Article and Find Full Text PDF

Background: De novo mutations (DNMs) have been implicated in the etiology of schizophrenia (SZ), a chronic debilitating psychiatric disorder characterized by hallucinations, delusions, cognitive dysfunction, and decreased community functioning. Several DNMs have been identified by examining SZ cases and their unaffected parents; however, in most cases, the biological significance of these mutations remains elusive. To overcome this limitation, we have developed an approach of using induced pluripotent stem cell (iPSC) lines from each member of a SZ case-parent trio, in order to investigate the effects of DNMs in cellular progenies of interest, particularly in dentate gyrus neuronal progenitors.

View Article and Find Full Text PDF

Efficient cell migration requires cellular polarization, which is characterized by the formation of leading and trailing edges, appropriate positioning of the nucleus and reorientation of the Golgi apparatus and centrosomes toward the leading edge. Migration also requires the development of an asymmetrical front-to-rear calcium (Ca) gradient to regulate focal adhesion assembly and actomyosin contractility. Here we demonstrate that silencing of syndecan-4, a transmembrane heparan sulfate proteoglycan, interferes with the correct polarization of migrating mammalian myoblasts (i.

View Article and Find Full Text PDF

The ABCG2 protein has a key role in the transport of a wide range of structurally dissimilar endo- and xenobiotics in the human body, especially in the tissue barriers and the metabolizing or secreting organs. The human ABCG2 gene harbors a high number of polymorphisms and mutations, which may significantly modulate its expression and function. Recent high-resolution structural data, complemented with molecular dynamic simulations, may significantly help to understand intramolecular movements and substrate handling, as well as the effects of mutations on the membrane transporter function of ABCG2.

View Article and Find Full Text PDF

Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical studies on the DHVAR4-TZ interaction indicate that initially large, positively charged aggregates are formed, but in the presence of lipid bilayers, they rather associate with the membrane surface. In contrast to synergistic effects observed for mixed antibacterial compounds, this is a principally different mechanism, where TZ directly acts on the membrane-associated AMP promoting its biologically active helical conformation.

View Article and Find Full Text PDF

Synaptic functional disturbances with concomitant synapse loss represent central pathological hallmarks of Alzheimer's disease. Excessive accumulation of cytotoxic amyloid oligomers is widely recognized as a key event that underlies neurodegeneration. Certain complement components are crucial instruments of widespread synapse loss because they can tag synapses with functional impairments leading to their engulfment by microglia.

View Article and Find Full Text PDF

One of the most promising applications of human pluripotent stem cells is their utilization for human-based pharmacological models. Despite the fact that membrane transporters expressed in the liver play pivotal role in various hepatic functions, thus far only little attention was devoted to the membrane transporter composition of the stem cell-derived liver models. In the present work, we have differentiated HUES9, a human embryonic stem cell line, toward the hepatic lineage, and monitored the expression levels of numerous differentiation marker and liver transporter genes with special focus on ABC transporters.

View Article and Find Full Text PDF