This work covers the formation of a passive state for two different alloys used in the aeronautical industry. The aim of this study is to investigate the effectiveness of passivation treatments on 17-7PH and 410 SS (stainless steel) samples, specifically when performed with citric and nitric acid solutions at 49 °C using an immersion time of 90 min and subsequent exposure in 3.5 wt.
View Article and Find Full Text PDFThe effect of temperature on the localized corrosion resistance and passive film characteristics of laser powder-bed fusion (LPBF) 316L (UNS S31603) was studied in a buffered 3.5 wt% NaCl solution at 25, 50, and 75 °C. DC techniques such as cyclic potentiodynamic polarization showed lower passive current densities, high breakdown potentials, and a higher resistance to initial breakdown compared with wrought 316L samples at all temperatures.
View Article and Find Full Text PDFIn this work, the passivation and localized corrosion of selective laser melted (SLM) stainless steel 316 L when exposed to high pressures of CO with the presence of HS and Cl at 25 °C and 125 °C were studied. Depletion of Cr/Mo was observed at the cell interiors and melt-pool boundaries (MPBs) compared to the cell boundaries. Volta potential differences obtained from scanning Kelvin probe force microscopy (SKPFM) showed that the MPBs were 8-20 mV lower than the matrix, while the cell interiors were 20-50 mV lower than the cell boundaries.
View Article and Find Full Text PDFThe ultrathin nanocomposite coatings made of zirconium oxide (ZrO), zinc oxide (ZnO), and titanium oxide (TiO) on stainless steel (SS) were prepared by the radio frequency sputtering method, and the effects of the nanocomposite coating on corrosion protection and antibacterial activities of nanocomposite coated SS were investigated. Scanning electron microscopy was conducted to observe surface morphology of nanocomposite coatings with distinct distribution of grains with the formation on SS substrate. From the electrochemical impedance spectroscopy results, ZrO/ZnO/TiO nanocomposite coating showed excellent corrosion protection performance at 37 °C during immersion in simulated body fluid and saliva solution for 12 and 4 weeks, respectively.
View Article and Find Full Text PDFAs a thermoplastic polymer with an impressive combination of mechanical properties and biological compatibility, thermoplastic polyurethane (TPU) is one of the important polymers used in various applications such as biomaterials, conducting materials, and tissue engineering. Nanocomposites made of TPUs with nanoclays were prepared by melt-compounding, and the effects of clay on antibacterial activities and physical properties of nanocomposites were investigated. X-ray powder diffraction, water contact angle, and TEM results were analyzed to investigate the effects of dispersion and modification of clays in TPU/clay nanocomposites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Triethanolamine (TEA), an amine-based corrosion inhibitor, was encapsulated and then embedded into an epoxy coating to provide long-term corrosion protection of aluminum alloy 3003. TEA was encapsulated by means of free-radical polymerization, yielding an average particle size of 450 nm. An applied epoxy coating containing 10 wt % of the nanocapsules successfully protected an artificially defective area for a long period due to TEA adsorption, which resulted in the formation of an inhibiting layer.
View Article and Find Full Text PDFAn integrated zwitterionic conjugated polymer-based biomaterial platform was designed and studied to address some of the key challenges of conjugated polymers in biomedical applications. This biomaterial platform consists of conjugated polymer backbones and multifunctional zwitterionic side chains. Zwitterionic materials gain electrical conductivity and interesting optical properties through conjugated polymer backbones, and non-biocompatible conjugated polymers obtain excellent antifouling properties, enhanced electrical conductivity, functional groups of bioconjugation and response to environmental stimuli multifunctional zwitterionic side chains.
View Article and Find Full Text PDFModifications to the space charge region of p+ and p-GaAs due to surface charge modulation by the pH-induced deprotonation of bound carboxylic acid terminal monolayers were studied by electrochemical impedance spectroscopy and correlated to flat-band potential measurements from Mott-Schottky plots. We infer that the negative surface dipole formed on GaAs due to monolayer deprotonation causes an enhancement of the downward interfacial band bending. The space charge layer modifications were correlated to intermolecular electrostatic interactions and semiconductor depletion characteristics.
View Article and Find Full Text PDF