Publications by authors named "Homayoun Vaziri"

Genetic comparison between human embryonic stem cells and induced pluripotent stem cells has been hampered by genetic variation. To solve this problem, we have developed an isogenic system that allows direct comparison of induced pluripotent stem cells (hiPSCs) to their genetically matched human embryonic stem cells (hESCs). We show that hiPSCs have a highly similar transcriptome to hESCs.

View Article and Find Full Text PDF

Functional proteins of complex eukaryotes within the same species are rather invariant. A single catalytic component of telomerase TERT is essential for an active telomerase complex that maintains telomeres. Surprisingly, we have identified two paralogous SpTERT-L and SpTERT-S genes with novel domains in Strongylocentrotus purpuratus (purple sea urchin).

View Article and Find Full Text PDF

Human embryonic stem cells offer a scalable and renewable source of all somatic cell types. Human embryonic progenitor (hEP) cells are partially differentiated endodermal, mesodermal and ectodermal cell types that have not undergone terminal differentiation and express an embryonic pattern of gene expression. Here, we describe a large-scale and reproducible method of isolating a diverse library of clonally purified hEP cell lines, many of which are capable of extended propagation in vitro.

View Article and Find Full Text PDF

SIRT1, the mammalian homolog of SIR2 in Saccharomyces cerevisiae, is an NAD-dependent deacetylase implicated in regulation of lifespan. By designing effective short hairpin RNAs and a silent shRNA-resistant mutant SIRT1 in a genetically defined system, we show that efficient inhibition of SIRT1 in telomerase-immortalized human cells enhanced cell growth under normal and nutrient limiting conditions. Hematopoietic stem cells obtained from SIRT1-deficient mice also showed increased growth capacity and decreased dependency on growth factors.

View Article and Find Full Text PDF

The ING family of proteins is involved in the regulation of diverse processes ranging from cell cycle and cellular senescence to apoptosis. These effects are most likely through activation of acetylation-dependent pathways that ultimately alter gene expression. Despite reports linking ING to p53 activation, the molecular basis of how ING activates p53 function has not been elucidated.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase-1 (PARP-1) and the p53 tumor suppressor protein are both involved in the cellular response to genotoxic stress. Upon binding to the site of DNA strand breakage, PARP-1 is activated, leading to rapid and transient poly(ADP-ribosyl)ation of nuclear proteins using NAD+ as substrate. To investigate the role of PARP-1 in the p53 response to ionizing radiation in human cells, PARP-1 function was disrupted in wild-type p53 expressing MCF-7 and BJ/TERT cells using two strategies: chemical inhibition with 1,5-dihydroxyisoquinoline, and trans-dominant inhibition by overexpression of the PARP-1 DNA-binding domain.

View Article and Find Full Text PDF