Publications by authors named "Homayoun Shams"

Efferocytosis by alveolar phagocytes (APs) is pivotal in maintenance of lung homeostasis. Increased efferocytosis by APs results in protection against lethal acute lung injury due to pulmonary infections whereas defective efferocytosis by APs results in chronic lung inflammation. In this report, we show that pulmonary delivery of Bacillus Calmette-Guerin (BCG) significantly enhances efferocytosis by APs.

View Article and Find Full Text PDF

Background: Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV) pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza.

View Article and Find Full Text PDF

Seasonal and especially pandemic influenza predispose patients to secondary bacterial pneumonias, which are a major cause of deaths and morbidity. Staphylococcus aureus is a particularly common and deadly form of post-influenza pneumonia, and increasing staphylococcal drug resistance makes the development of new therapies urgent. We explored an innate immune-mediated model of the lung to define novel mechanisms by which the host can be protected against secondary staphylococcal pneumonia after sub-lethal influenza infection.

View Article and Find Full Text PDF

Aging increases susceptibility to infection, in part because thymic involution culminates in reduced naïve T-lymphocyte output. Thymic epithelial cells (TECs) are critical to ensure normal maturation of thymocytes and production of peripheral T cells. The forkhead-class transcription factor, encoded by FoxN1, regulates development, differentiation, and function of TECs, both in the prenatal and postnatal thymus.

View Article and Find Full Text PDF

Rationale: Alveolar macrophages contribute to host defenses against influenza in animal models. Enhancing alveolar macrophage function may contribute to protection against influenza.

Objectives: To determine if increased expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) in the lung increases resistance to influenza.

View Article and Find Full Text PDF

Smoking is associated with increased susceptibility to tuberculosis and influenza. However, little information is available on the mechanisms underlying this increased susceptibility. Mice were left unexposed or were exposed to cigarette smoke and then infected with Mycobacterium tuberculosis by aerosol or influenza A by intranasal infection.

View Article and Find Full Text PDF

Development of an effective vaccine against tuberculosis hinges on an improved understanding of the human immune response to Mycobacterium tuberculosis. Work in this area at the University of Texas Health Science Center at Tyler has led to advances in four areas: (1) natural killer cells contribute to innate immunity by lysing M. tuberculosis-infected mononuclear phagocytes, and to adaptive immunity by enhancing the CD8+ T-cell effector function and inhibiting expansion of T regulatory cells; (2) Interferon-gamma plays a central role in resistance to many intracellular pathogens, including M.

View Article and Find Full Text PDF

To determine the immunogenicity and protective efficacy of the Mycobacterium tuberculosis 10 kD culture filtrate protein (CFP10), and to evaluate strategies that enhance local immunity, we used C57Bl/6 DR4 mice that were transgenic for human HLA DRB1 0401, because CFP10 contains epitopes for DRB1 0401 but not for C57Bl/6 mice. Intramuscular immunization with a DNA vaccine encoding CFP10 elicited production of IFN-gamma by systemic CD4+ T cells, and one intravenous dose of the CFP10-based DNA vaccine coated with polyethylenimine (PEI) stimulated IFN-gamma production by lung CD4+ cells and reduced the pulmonary bacillary burden. We conclude that CFP10 is a potential vaccine candidate and that coating vaccines with PEI enhances local protective immunity to tuberculosis

View Article and Find Full Text PDF

The Mycobacterium tuberculosis early secreted Ag of 6 kDa (ESAT-6) is a potent Ag for human T cells and is a putative vaccine candidate. However, ESAT-6 also contributes to virulence in animal models, mediates cellular cytolysis, and inhibits IL-12 production by mononuclear phagocytes. We evaluated the effects of ESAT-6 and its molecular chaperone, culture filtrate protein of 10 kDa (CFP10), on the capacity of human T cells to produce IFN-gamma and proliferate in response to TCR activation.

View Article and Find Full Text PDF

Dendritic cells (DC) present lipid and peptide antigens to T cells on CD1 and MHC Class II (MHCII), respectively. The relative contribution of these systems during the initiation of adaptive immunity after microbial infection is not characterized. MHCII molecules normally acquire antigen and rapidly traffic from phagolysosomes to the plasma membrane as part of DC maturation, whereas CD1 molecules instead continually recycle between these sites before, during, and after DC maturation.

View Article and Find Full Text PDF

IFN-gamma production by T cells is pivotal for defense against many pathogens, and the proximal promoter of IFN-gamma, -73 to -48 bp upstream of the transcription start site, is essential for its expression. However, transcriptional regulation mechanisms through this promoter in primary human cells remain unclear. We studied the effects of cAMP response element binding protein/activating transcription factor (CREB/ATF) and AP-1 transcription factors on the proximal promoter of IFN-gamma in human T cells stimulated with Mycobacterium tuberculosis.

View Article and Find Full Text PDF

CD4+ T cells are believed to play a dominant role in human defenses against Mycobacterium tuberculosis through production of interferon (IFN)-gamma, cytolytic T-cell (CTL) activity, and inhibition of intracellular mycobacterial growth. Most functional studies of CD4+ cells have used bulk T-cells that recognize crude mycobacterial antigens, and the functional capacity of individual human T cells is not well defined. We studied the functional capacity of human CD4+ T-cell clones that recognize a specific mycobacterial peptide.

View Article and Find Full Text PDF

Advancement in technology and science and our detailed knowledge of immunology, molecular biology, microbiology, and biochemistry among other basic science disciplines have defined new directions for vaccine development strategies. The applicability of genetic engineering and proteomics along with other new technologies have played pivotal roles in introducing novel ideas in vaccinology, and resulted in developing new vaccines and improving the quality of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines and vectored vaccines are rapidly gaining scientific and public acceptance as the new generation of vaccines and are seriously considered as alternatives to current conventional vaccines.

View Article and Find Full Text PDF

Rationale: Diagnosis of latent tuberculosis infection (LTBI) is currently based on the tuberculin skin test. The enzyme-linked immunospot assay (ELISPOT) is a new blood test to diagnose LTBI.

Objective: To compare the ELISPOT and the tuberculin skin test for detecting LTBI in contacts of patients with tuberculosis.

View Article and Find Full Text PDF

IFN-gamma is essential for resistance to many intracellular pathogens, including Mycobacterium tuberculosis. Transcription of the IFN-gamma gene in activated T cells is controlled by the proximal promoter element (-73 to -48 bp). CREB binds to the IFN-gamma proximal promoter, and binding is enhanced by phosphorylation of CREB.

View Article and Find Full Text PDF

The secreted Mycobacterium tuberculosis 10-kDa culture filtrate protein (CFP)10 is a potent T cell Ag that is recognized by a high percentage of persons infected with M. tuberculosis. We determined the molecular basis for this widespread recognition by identifying and characterizing a 15-mer peptide, CFP10(71-85), that elicited IFN-gamma production and CTL activity by both CD4(+) and CD8(+) T cells from persons expressing multiple MHC class II and class I molecules, respectively.

View Article and Find Full Text PDF

The mobile insertion sequence, IS6110, is an important marker in tracking of Mycobacterium tuberculosis strains. Here, we demonstrate that IS6110 can upregulate downstream genes through an outward-directed promoter in its 3' end, thus adding to the significance of this element. Promoter activity was orientation dependent and was localized within a 110 bp fragment adjacent to the right terminal inverted repeat.

View Article and Find Full Text PDF

The ability of Mycobacterium tuberculosis to grow in macrophages is central to its pathogenicity. We found previously that the widespread 210 strain of M. tuberculosis grew more rapidly than other strains in human macrophages.

View Article and Find Full Text PDF

We studied the role of NK cells in regulating human CD8+ T cell effector function against mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Depletion of NK cells from PBMC of healthy tuberculin reactors reduced the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ cells and decreased their capacity to lyse M.

View Article and Find Full Text PDF

Mycobacterium tuberculosis antigens that are recognized by human CD8+ T cells are potentially important vaccine target molecules. We used a motif-based strategy to screen selected proteins of M. tuberculosis for peptides predicted to bind to human leukocyte antigen (HLA)-A*0201.

View Article and Find Full Text PDF

Prior reports have suggested that CD14 mediates uptake of Mycobacterium tuberculosis into porcine alveolar macrophages and human fetal microglia, but the contribution of CD14 to cell entry in human macrophages has not been studied. To address this question, we used flow cytometry to quantify uptake by human monocytes and alveolar macrophages of M. tuberculosis expressing green fluorescent protein.

View Article and Find Full Text PDF

We investigated the effect of recombinant CD40 ligand trimer (CD40LT) on the functional capacity of peripheral blood CD8(+) T cells from healthy tuberculin reactors that were cultured with Mycobacterium tuberculosis-infected autologous monocytes. CD40LT enhanced the capacity of M. tuberculosis-responsive CD8(+) T cells to produce IFN-gamma by increasing the number of IFN-gamma-producing CD8(+) T cells and the amount of IFN-gamma produced per cell.

View Article and Find Full Text PDF

We measured serum cytokine concentrations and Mycobacterium tuberculosis-stimulated cytokine production by peripheral blood mononuclear cells (PBMCs) obtained from persons infected with M. tuberculosis. Serum interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) concentrations were elevated in patients with tuberculosis compared with healthy persons who had reactions to tuberculin skin tests, but IL-18 concentrations were not.

View Article and Find Full Text PDF