Publications by authors named "Homayoun Hamedmoghadam"

Vaccination campaigns have both direct and indirect effects that act to control an infectious disease as it spreads through a population. Indirect effects arise when vaccinated individuals block disease transmission in any infection chain they are part of, and this in turn can benefit both vaccinated and unvaccinated individuals. Indirect effects are difficult to quantify in practice but, in this article, working with the susceptible-infected-recovered (SIR) model, they are analytically calculated in important cases, through pivoting on the final size formula for epidemics.

View Article and Find Full Text PDF

Whether it be the passengers' mobility demand in transportation systems, or the consumers' energy demand in power grids, the primary purpose of many infrastructure networks is to best serve this flow demand. In reality, the volume of flow demand fluctuates unevenly across complex networks while simultaneously being hindered by some form of congestion or overload. Nevertheless, there is little known about how the heterogeneity of flow demand influences the network flow dynamics under congestion.

View Article and Find Full Text PDF

The spread of traffic jams in urban networks has long been viewed as a complex spatio-temporal phenomenon that often requires computationally intensive microscopic models for analysis purposes. In this study, we present a framework to describe the dynamics of congestion propagation and dissipation of traffic in cities using a simple contagion process, inspired by those used to model infectious disease spread in a population. We introduce two macroscopic characteristics for network traffic dynamics, namely congestion propagation rate β and congestion dissipation rate μ.

View Article and Find Full Text PDF

Previous theoretical and data-driven studies on urban mobility uncovered the repeating patterns in individual and collective human behavior. This paper analyzes the travel demand characteristics of mobility networks through studying a coarse-grained representation of individual trips. Building on the idea of reducing the complexity of the mobility network, we investigate the preserved spatial and temporal information in a simplified representations of large-scale origin-destination matrices derived from more than 16 million taxi trip records from New York and Chicago.

View Article and Find Full Text PDF