Background: The broad histomorphological spectrum of melanocytic pathologies requires large data sets to develop accurate and generalisable deep learning (DL)-based diagnostic pathology classifiers. Weakly supervised DL promotes utilisation of larger training data sets compared to fully supervised (patch annotation) approaches.
Objectives: To evaluate weakly supervised DL image classifiers for discriminating melanomas from naevi on haematoxylin and eosin (H&E)-stained pathology slides.
As Chronic Kidney Disease progresses slowly, early detection and effective treatment are the only cure to reduce the mortality rate. Machine learning techniques are gaining significance in medical diagnosis because of their classification ability with high accuracy rates. The accuracy of classification algorithms depend on the use of correct feature selection algorithms to reduce the dimension of datasets.
View Article and Find Full Text PDF