The exposure of molecules to attosecond extreme-ultraviolet (XUV) pulses offers a unique opportunity to study the early stages of coupled electron-nuclear dynamics in which the role played by the different degrees of freedom is beyond standard chemical intuition. We investigate, both experimentally and theoretically, the first steps of charge-transfer processes initiated by prompt ionization in prototype donor-π-acceptor molecules, namely nitroanilines. Time-resolved measurement of this process is performed by combining attosecond XUV-pump/few-femtosecond infrared-probe spectroscopy with advanced many-body quantum chemistry calculations.
View Article and Find Full Text PDFThe dissociative photoionization of phenyl triflate (C6H5OSO2CF3), a neutral photoacid generator used in photolithography, was investigated in a gas phase experiment employing extreme ultraviolet (EUV) synchrotron radiation at 92 eV and photoelectron-photoion coincidence detection. The interaction of EUV photons with the molecule leads almost exclusively to dissociation, which is dominated by a sequential fragmentation mechanism, in which SO2, CF3, CO, and C2H2 are lost. For lithographic purposes, the lack of the observation of a fragment that could serve as a precursor for the formation of triflic acid means that the effective photoacid generator concentration in a photoresist is reduced, impacting its patterning performance in EUV lithography.
View Article and Find Full Text PDFThe fragmentation of fulminic acid, HCNO, after excitation and ionization of core electrons was investigated using Auger-electron-photoion coincidence spectroscopy. A considerable degree of site-selectivity is observed. Ionization of the carbon and oxygen 1s electron leads to around 70% CH+ + NO+, while ionization at the central N-atom produces only 37% CH+ + NO+, but preferentially forms O+ + HCN+ and O+ + CN+.
View Article and Find Full Text PDFCharacterizing time delays in molecular photoionization as a function of the ejected electron emission direction relative to the orientation of the molecule and the light polarization axis provides unprecedented insights into the attosecond dynamics induced by extreme ultraviolet or X-ray one-photon absorption, including the role of electronic correlation and continuum resonant states. Here, we report completely resolved experimental and computational angular dependence of single-photon ionization delays in NO molecules across a shape resonance, relying on synchrotron radiation and time-independent ab initio calculations. The angle-dependent time delay variations of few hundreds of attoseconds, resulting from the interference of the resonant and non-resonant contributions to the dynamics of the ejected electron, are well described using a multichannel Fano model where the time delay of the resonant component is angle-independent.
View Article and Find Full Text PDFWe report a study on the fragmentation of core-ionized and core-excited isocyanic acid, HNCO, using Auger-electron/photoion coincidence spectroscopy. Site-selectivity is observed both for normal and resonant Auger electron decay. Oxygen 1s ionization leads to the CO + NH ion pairs, while nitrogen 1s ionization results in three-body dissociation and an efficient fragmentation of the H-N bond in the dication.
View Article and Find Full Text PDFHerein, we demonstrate photoelectron photoion coincidence (PEPICO) spectroscopy as a pivotal technique for evidencing unprecedented mechanistic insights by isomer-selective radical detection within complex hydrocarbon-functionalization reaction networks, such as those of catalyzed propane oxychlorination and oxybromination. In particular, while the oxychlorination is surface-confined, we show that in oxybromination alkane activation follows a gas-phase reaction mechanism with evolved bromine and bromine radicals, favoring 2-propyl over 1-propyl radical formation, as evidenced by isomer-selective threshold photoelectron analysis. Furthermore, we provide new mechanistic insights into the cracking and coking pathways that are observed in oxybromination.
View Article and Find Full Text PDFThe reaction products of the picolyl radicals at high temperature were characterized by mass-selective threshold photoelectron spectroscopy in the gas phase. Aminomethylpyridines were pyrolyzed to initially produce picolyl radicals (m/z=92). At higher temperatures further thermal reaction products are generated in the pyrolysis reactor.
View Article and Find Full Text PDFThe threshold photoelectron spectrum of methylene (CH), produced by consecutive H atom abstractions on methane, has been recorded using synchrotron radiation. The experimental spectrum spans the region of the Π ← ionizing transition. It is modeled starting from bending potentials and using the bending approach introduced by Coudert [J.
View Article and Find Full Text PDFThe role of the nuclear degrees of freedom in nonlinear two-photon single ionization of H_{2} molecules interacting with short and intense vacuum ultraviolet pulses is investigated, both experimentally and theoretically, by selecting single resonant vibronic intermediate neutral states. This high selectivity relies on the narrow bandwidth and tunability of the pulses generated at the FERMI free-electron laser. A sustained enhancement of dissociative ionization, which even exceeds nondissociative ionization, is observed and controlled as one selects progressively higher vibronic states.
View Article and Find Full Text PDFDiborenes, R-BB-R', are of current interest in inorganic chemistry because they offer the opportunity to tune the properties of a biradical by modifying the substituents of the diborene parent, HBBH. Here we synthesize the elusive diborene by H atom abstraction from diborane, BH, using fluorine atoms and report a vibrationally resolved photoelectron spectrum of the HBBH biradical. The spectrum is interpreted by comparison with high-level ab initio computations, taking into account the Renner-Teller splitting in the XΠ ionic ground state, which show an excellent agreement with the experimental spectrum.
View Article and Find Full Text PDFIn this paper, we investigate HNCO by resonant and nonresonant Auger electron spectroscopy at the K-edges of carbon, nitrogen, and oxygen, employing soft X-ray synchrotron radiation. In comparison with the isosteric but linear CO molecule, spectra of the bent HNCO molecule are similar but more complex due to its reduced symmetry, wherein the degeneracy of the π-orbitals is lifted. Resonant Auger electron spectra are presented at different photon energies over the first core-excited 1s → 10a' resonance.
View Article and Find Full Text PDFWe present the photoelectron spectra of C3Hx (x = 0-3) formed in a microwave discharge flow-tube reactor by consecutive H abstractions from C3H4 (C3Hx + F → C3Hx-1 + HF (x = 1-4)), but also from F + CH4 schemes by secondary reactions. The spectra were obtained combining tunable VUV synchrotron radiation with double imaging electron/ion coincidence techniques, yielding mass-selected threshold photoelectron spectra. The obtained results complement not only existing ones, but for the first time the photoelectron spectra of C3, cyclic and linear C3H (c,l-C3H) as well as of the excited states of C3H3 are reported.
View Article and Find Full Text PDFThe slow photoelectron spectrum of the ethynyl radical has been recorded for the first time by using the DESIRS beamline of the SOLEIL synchrotron facility. Ethynyl was generated using a microwave discharge flow tube. The observation of the XΠ3←XΣ+2 transition allowed the first direct measurement of the adiabatic ionization threshold of this radical (E = 11.
View Article and Find Full Text PDFWe report the first experimental observations of X(+) (1)Σ(+)←X (2)Π and a(+) (3)Π←X (2)Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer.
View Article and Find Full Text PDFWe report the determination of the absolute photoionization cross section of cyclopropenylidene, c-C3H2, and the heat of formation of the C3H radical and ion derived by the dissociative ionization of the carbene. Vacuum ultraviolet (VUV) synchrotron radiation as provided by the Swiss Light Source and imaging photoelectron photoion coincidence (iPEPICO) were employed. Cyclopropenylidene was generated by pyrolysis of a quadricyclane precursor in a 1 : 1 ratio with benzene, which enabled us to derive the carbene's near threshold absolute photoionization cross section from the photoionization yield of the two pyrolysis products and the known cross section of benzene.
View Article and Find Full Text PDFPyrolysis of 3-methoxypyridine in a heated pyrolysis reactor was found to be an efficient way to generate the pyrrolyl radical, c-C4H4N, in the gas phase. The threshold photoelectron (TPE) spectrum of this radical was recorded using vacuum ultraviolet synchrotron radiation. The spectrum revealed a singlet ground state at 9.
View Article and Find Full Text PDFIn this manuscript we present threshold photoelectron spectra (TPES) of the amidogen radical, NH2, recorded at two vacuum ultraviolet synchrotron radiation beamlines, the DESIRS beamline of Synchrotron SOLEIL and the VUV beamline of the Swiss Light Source (SLS). Amidogen radicals were generated by two different methods, (a) H-atom abstraction of ammonia in a fluorine microwave discharge flow tube and (b) flash pyrolysis of methylhydrazine and diphenylmethylamine. Due to the large geometry change upon photoionization from the bent neutral molecule NH2 (X[combining tilde] (2)B1) to the quasi-linear cation NH2(+) (X[combining tilde] (3)B1), significant activity in the bending vibration υ2(+) of NH2(+) (X[combining tilde] (3)B1) is observed in the TPES.
View Article and Find Full Text PDFThe threshold photoelectron spectra (TPES) of two unstable nitrogen-containing species, HNCO and NCO, were recorded utilizing vacuum ultraviolet synchrotron radiation. Both are intermediates in combustion processes and play a role in the removal of nitrogen oxides from exhaust gases. The rovibronic structure of the first band in the TPES of HNCO(+) was analyzed within the framework of an orbital ionization model, and the resolved structure of the origin band was assigned to ΔK subbands.
View Article and Find Full Text PDFThreshold photoelectron spectra of combustion relevant C4H5 isomers, 2-butyn-1-yl and 1-butyn-3-yl, and C4H7 isomers, 1-methylallyl and 2-methylallyl, have been recorded using vacuum ultraviolet synchrotron radiation. Adiabatic ionization energies (IEad) have been determined by assigning spectroscopic transitions in mass-selected threshold photoelectron spectra aided by Franck-Condon simulations. The following values were obtained: (7.
View Article and Find Full Text PDFDerivatives of meldrum's acid are known precursors for a number of reactive intermediates. Therefore, we investigate diazomeldrum's acid (DMA) and its pyrolysis products by photoionization using vacuum ultraviolet (VUV) synchrotron radiation. The threshold photoelectron spectrum of DMA yields an ionization energy (IE) of 9.
View Article and Find Full Text PDFThe ionization of two resonantly stabilized radicals, namely 1-phenylpropargyl (1PPR) and 3-phenylpropargyl (3PPR) are reinvestigated applying vacuum ultraviolet synchrotron radiation and threshold photoelectron spectroscopy. Ionization energies of 7.24±0.
View Article and Find Full Text PDFThe photoionization and dissociative photoionization of 1,4-di-tert-butyl-1,4-azaborinine by means of synchrotron radiation and threshold photoelectron photoion coincidence spectroscopy is reported. The ionization energy of the compound was determined to be 7.89 eV.
View Article and Find Full Text PDFIn this paper, we reinvestigate the photoionization of nitrogen containing reactive intermediates of the composition H2CN and H2CNH, molecules of importance in astrochemistry and biofuel combustion. In particular, H2CN is also of considerable interest to theory, because of its complicated potential energy surface. The species were generated by flash pyrolysis, ionized with vacuum ultraviolet synchrotron radiation, and studied by mass-selected threshold photoelectron (TPE) spectroscopy.
View Article and Find Full Text PDFTwo π-conjugated radicals, fluorenyl (C13H9) and benzhydryl (C13H11), as well as the carbene diphenylmethylene (C13H10) were studied by imaging photoelectron-photoion coincidence spectroscopy using VUV synchrotron radiation. The reactive intermediates were generated by flash pyrolysis from 9-bromofluorene and α-aminodiphenylmethane (adpm), respectively. Adiabatic ionization energies (IEad) for all three species were extracted.
View Article and Find Full Text PDF