Front Fungal Biol
September 2024
Fungi are ubiquitous in the environment and play a key role in the decomposition and recycling of nutrients. On the one hand, their special properties are a great asset for the agricultural and industrial sector, as they are used as source of nutrients, producers of enzymes, pigments, flavorings, and biocontrol agents, and in food processing, bio-remediation and plant growth promotion. On the other hand, they pose a serious challenge to our lives and the environment, as they are responsible for fungal infections in plants, animals and humans.
View Article and Find Full Text PDFTemporin B (TB) is a 13-amino-acid-long, cationic peptide secreted by the granular glands of the European frog Rana temporaria. We recently showed that the modified TB peptide analog TB_KKG6K rapidly killed planktonic and sessile Candida albicans at low micromolar concentrations and was neither hemolytic nor cytotoxic to mammalian cells . The present study aimed to shed light into its mechanism of action, with a focus on its fungal cell membrane activity.
View Article and Find Full Text PDFThe emerging resistance of human-pathogenic fungi to antifungal drugs urges the development of alternative therapeutic strategies. The small, cationic antifungal proteins (AFPs) from filamentous ascomycetes represent promising candidates for next-generation antifungals. These bio-molecules need to be tested for tolerance in the host and efficacy against fungal pathogens before they can be safely applied in humans.
View Article and Find Full Text PDFTemporin B (TB) is a short, positively charged peptide secreted by the granular glands of the European frog . While the antibacterial and antiviral efficacy of TB and some of its improved analogs are well documented, nothing is known about their antifungal potency so far. We dedicated this study to characterize the antifungal potential of the TB analog TB_KKG6K and the newly designed D-Lys_TB_KKG6K, the latter having the L-lysines replaced by the chiral counterpart D-lysines to improve its proteolytic stability.
View Article and Find Full Text PDFphytopathogenic species provoke severe postharvest disease and economic losses. is the main pome fruit phytopathogen while and cause citrus green and blue mold, respectively. Control strategies rely on the use of synthetic fungicides, but the appearance of resistant strains and safety concerns have led to the search for new antifungals.
View Article and Find Full Text PDFThe genome of Q176 contains a gene coding for the 88-amino-acid (aa)-long glycine- and cysteine-rich antifungal protein C (PAFC). After maturation, the secreted antifungal miniprotein (MP) comprises 64 aa and shares 80% aa identity with the bubble protein (BP) from , which has a published X-ray structure. Our team expressed isotope (N, C)-labeled, recombinant PAFC in high yields, which allowed us to determine the solution structure and molecular dynamics by nuclear magnetic resonance (NMR) experiments.
View Article and Find Full Text PDFSmall, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes promise treatment alternatives to licensed antifungal drugs. In this study, we characterized the Q176 antifungal protein C (PAFC), which is phylogenetically distinct to the other two antifungal proteins, PAF and PAFB, that are expressed by this biotechnologically important ascomycete. PAFC is secreted into the culture broth and is co-expressed with PAF and PAFB in the exudates of surface cultures.
View Article and Find Full Text PDFThe prevention of enormous crop losses caused by pesticide-resistant fungi is a serious challenge in agriculture. Application of alternative fungicides, such as antifungal proteins and peptides, provides a promising basis to overcome this problem; however, their direct use in fields suffers limitations, such as high cost of production, low stability, narrow antifungal spectrum and toxicity on plant or mammalian cells. Recently, we demonstrated that a Penicillium chrysogenum-based expression system provides a feasible tool for economic production of P.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
August 2020
The filamentous fungus Penicillium chrysogenum Q176 secretes the antimicrobial proteins (AMPs) PAF and PAFB, which share a compact disulfide-bond mediated, β-fold structure rendering them highly stable. These two AMPs effectively inhibit the growth of human pathogenic fungi in micromolar concentrations and exhibit antiviral potential without causing cytotoxic effects on mammalian cells in vitro and in vivo. The antifungal mechanism of action of both AMPs is closely linked to - but not solely dependent on - the lipid composition of the fungal cell membrane and requires a strictly regulated protein uptake into the cell, indicating that PAF and PAFB are not canonical membrane active proteins.
View Article and Find Full Text PDFBackground: Increasing bacterial resistance to antibiotics is a serious problem worldwide. We sought to record the acquisition of antibiotic-resistant () in healthy infants in Northern Thailand and investigated potential determinants.
Methods: Stool samples from 142 infants after birth, at ages 2wk, 2mo, 4 to 6mo, and 1y, and parent stool samples were screened for resistance to tetracycline, ampicillin, co-trimoxazole, and cefazoline by culture, and isolates were further investigated for multiresistance by disc diffusion method.
Antimicrob Agents Chemother
February 2019
As a consequence of emerging numbers of vulvovaginitis cases caused by azole-resistant and biofilm-forming species, fast and efficient treatment of this infection has become challenging. The problem is further exacerbated by the severe side effects of azoles as long-term-use medications in the recurrent form. There is therefore an increasing demand for novel and safely applicable effective antifungal therapeutic strategies.
View Article and Find Full Text PDF